Jump to ContentJump to Main Navigation
Complex Ball Quotients and Line Arrangements in the Projective Plane (MN-51)$
Users without a subscription are not able to see the full content.

Paula Tretkoff

Print publication date: 2016

Print ISBN-13: 9780691144771

Published to Princeton Scholarship Online: October 2017

DOI: 10.23943/princeton/9780691144771.001.0001

Show Summary Details
Page of

PRINTED FROM PRINCETON SCHOLARSHIP ONLINE (www.princeton.universitypressscholarship.com). (c) Copyright Princeton University Press, 2017. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a monograph in HSO for personal use (for details see http://www.universitypressscholarship.com/page/privacy-policy).date: 16 December 2017

Riemann Surfaces, Coverings, and Hypergeometric Functions

Riemann Surfaces, Coverings, and Hypergeometric Functions

Chapter:
(p.23) Chapter Two Riemann Surfaces, Coverings, and Hypergeometric Functions
Source:
Complex Ball Quotients and Line Arrangements in the Projective Plane (MN-51)
Author(s):

Paula Tretkoff

Publisher:
Princeton University Press
DOI:10.23943/princeton/9780691144771.003.0003

This chapter deals with Riemann surfaces, coverings, and hypergeometric functions. It first considers the genus and Euler number of a Riemann surface before discussing Möbius transformations and notes that an automorphism of a Riemann surface is a biholomorphic map of the Riemann surface onto itself. It then describes a Riemannian metric and the Gauss-Bonnet theorem, which can be interpreted as a relation between the Gaussian curvature of a compact Riemann surface X and its Euler characteristic. It also examines the behavior of the Euler number under finite covering, along with finite subgroups of the group of fractional linear transformations PSL(2, C). Finally, it presents some basic facts about the classical Gauss hypergeometric functions of one complex variable, triangle groups acting discontinuously on one of the simply connected Riemann surfaces, and the hypergeometric monodromy group.

Keywords:   finite covering, Riemann surface, Euler number, Möbius transformation, Riemannian metric, Gaussian curvature, Gauss hypergeometric function, triangle groups, monodromy group, fractional linear transformation

Princeton Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us.