Jump to ContentJump to Main Navigation
Statistics, Data Mining, and Machine Learning in AstronomyA Practical Python Guide for the Analysis of Survey Data$
Users without a subscription are not able to see the full content.

Željko Ivezic, Andrew J. Connolly, Jacob T VanderPlas, and Alexander Gray

Print publication date: 2014

Print ISBN-13: 9780691151687

Published to Princeton Scholarship Online: October 2017

DOI: 10.23943/princeton/9780691151687.001.0001

Show Summary Details
Page of

PRINTED FROM PRINCETON SCHOLARSHIP ONLINE (www.princeton.universitypressscholarship.com). (c) Copyright Princeton University Press, 2017. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a monograph in HSO for personal use (for details see http://www.universitypressscholarship.com/page/privacy-policy).date: 20 January 2018

Classical Statistical Inference

Classical Statistical Inference

Chapter:
(p.123) 4 Classical Statistical Inference
Source:
Statistics, Data Mining, and Machine Learning in Astronomy
Author(s):

Željko Ivezi

Andrew J. Connolly

Jacob T. VanderPlas

Alexander Gray

Željko Ivezi

Andrew J. Connolly

Jacob T. VanderPlas

Alexander Gray

Publisher:
Princeton University Press
DOI:10.23943/princeton/9780691151687.003.0004

This chapter introduces the main concepts of statistical inference, or drawing conclusions from data. There are three main types of inference: point estimation, confidence estimation, and hypothesis testing. There are two major statistical paradigms which address the statistical inference questions: the classical, or frequentist paradigm, and the Bayesian paradigm. While most of statistics and machine learning is based on the classical paradigm, Bayesian techniques are being embraced by the statistical and scientific communities at an ever-increasing pace. The chapter begins with a short comparison of classical and Bayesian paradigms, and then discusses the three main types of statistical inference from the classical point of view.

Keywords:   statistical inference, point estimation, confidence estimation, hypothesis testing, Bayesian paradigm, frequentist paradigm

Princeton Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us.