Jump to ContentJump to Main Navigation
Mumford-Tate Groups and DomainsTheir Geometry and Arithmetic (AM-183)$
Users without a subscription are not able to see the full content.

Mark Green, Phillip A. Griffiths, and Matt Kerr

Print publication date: 2012

Print ISBN-13: 9780691154244

Published to Princeton Scholarship Online: October 2017

DOI: 10.23943/princeton/9780691154244.001.0001

Show Summary Details
Page of

PRINTED FROM PRINCETON SCHOLARSHIP ONLINE (www.princeton.universitypressscholarship.com). (c) Copyright Princeton University Press, 2018. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a monograph in HSO for personal use (for details see www.princeton.universitypressscholarship.com/page/privacy-policy).date: 22 October 2018

Mumford-Tate Groups

Mumford-Tate Groups

Chapter:
(p.28) Chapter I Mumford-Tate Groups
Source:
Mumford-Tate Groups and Domains
Author(s):

Mark Green

Phillip Griffiths

Matt Kerr

Publisher:
Princeton University Press
DOI:10.23943/princeton/9780691154244.003.0002

This chapter provides an introduction to the basic definitions and properties of Mumford-Tate groups in both the case of Hodge structures and of mixed Hodge structures. Hodge structures of weight n are sometimes called pure Hodge structures, and the term “Hodge structure” then refers to a direct sum of pure Hodge structures. The chapter presents three definitions of a Hodge structure of weight n, given in historical order. In the first definition, a Hodge structure of weight n is given by a Hodge decomposition; in the second, it is given by a Hodge filtration; in the third, it is given by a homomorphism of ℝ-algebraic groups. In the first two definitions, n is assumed to be positive and the p,q's in the definitions are non-negative. In the third definition, n and p,q are arbitrary. For the third definition, the Deligne torus integers are used.

Keywords:   Mumford-Tate group, Hodge structure, mixed Hodge structure, pure Hodge structure, Hodge decomposition, Hodge filtration, homomorphism, Deligne torus integer

Princeton Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us.