Jump to ContentJump to Main Navigation
Mathematical Tools for Understanding Infectious Disease Dynamics$
Users without a subscription are not able to see the full content.

Odo Diekmann, Hans Heesterbeek, and Tom Britton

Print publication date: 2012

Print ISBN-13: 9780691155395

Published to Princeton Scholarship Online: October 2017

DOI: 10.23943/princeton/9780691155395.001.0001

Show Summary Details
Page of

PRINTED FROM PRINCETON SCHOLARSHIP ONLINE (www.princeton.universitypressscholarship.com). (c) Copyright Princeton University Press, 2018. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a monograph in HSO for personal use (for details see http://www.universitypressscholarship.com/page/privacy-policy).date: 20 July 2018

The basic reproduction number

The basic reproduction number

Chapter:
(p.161) Chapter Seven The basic reproduction number
Source:
Mathematical Tools for Understanding Infectious Disease Dynamics
Author(s):

Odo Diekmann

Hans Heesterbeek

Tom Britton

Publisher:
Princeton University Press
DOI:10.23943/princeton/9780691155395.003.0007

The basic reproduction number (or ratio) R₀ is arguably the most important quantity in infectious disease epidemiology. It is among the quantities most urgently estimated for infectious diseases in outbreak situations, and its value provides insight when designing control interventions for established infections. From a theoretical point of view R₀ plays a vital role in the analysis of, and consequent insight from, infectious disease models. There is hardly a paper on dynamic epidemiological models in the literature where R₀ does not play a role. R₀ is defined as the average number of new cases of an infection caused by one typical infected individual, in a population consisting of susceptibles only. This chapter shows how R₀ can be characterized mathematically and provides detailed examples of its calculation in terms of parameters of epidemiological models, culminating in a set of algorithms (or “recipes”) for the calculation for compartmental epidemic systems.

Keywords:   structured population models, reproduction number, epidemiological models, compartmental epidemic systems, infectious disease epidemiology, infectious diseases, outbreak situations

Princeton Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us.