Jump to ContentJump to Main Navigation
The Gross-Zagier Formula on Shimura Curves$
Users without a subscription are not able to see the full content.

Xinyi Yuan, Shou-wu Zhang, and Wei Zhang

Print publication date: 2012

Print ISBN-13: 9780691155913

Published to Princeton Scholarship Online: October 2017

DOI: 10.23943/princeton/9780691155913.001.0001

Show Summary Details
Page of

PRINTED FROM PRINCETON SCHOLARSHIP ONLINE (www.princeton.universitypressscholarship.com). (c) Copyright Princeton University Press, 2019. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a monograph in HSO for personal use (for details see www.princeton.universitypressscholarship.com/page/privacy-policy).date: 22 February 2019

Trace of the Generating Series

Trace of the Generating Series

(p.106) Chapter Four Trace of the Generating Series
The Gross-Zagier Formula on Shimura Curves

Xinyi Yuan

Shou-Wu Zhang

Wei Zhang

Princeton University Press

This chapter proves the theorem that asserts the modularity of the generating series and the theorem dealing with abelian varieties parametrized by Shimura curves. Before presenting the proofs, the chapter considers the new space of Schwartz functions and constructs theta series and Eisenstein series from such functions. It proceeds by discussing discrete series at infinite places, modularity of the generating series, degree of the generating series, and the trace identity. It also presents the pull-back formula for the compact and non-compact cases. In particular, it describes CM cycles on the Shimura curve, pull-back as cycles, degree of the pull-back, and some coset identities.

Keywords:   modularity, generating series, abelian varieties, Shimura curves, Schwartz function, theta series, Eisenstein series, discrete series, trace identity, pull-back formula

Princeton Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us.