Jump to ContentJump to Main Navigation
Degenerate Diffusion Operators Arising in Population Biology (AM-185)$
Users without a subscription are not able to see the full content.

Charles L. Epstein and Rafe Mazzeo

Print publication date: 2013

Print ISBN-13: 9780691157122

Published to Princeton Scholarship Online: October 2017

DOI: 10.23943/princeton/9780691157122.001.0001

Show Summary Details
Page of

PRINTED FROM PRINCETON SCHOLARSHIP ONLINE (www.princeton.universitypressscholarship.com). (c) Copyright Princeton University Press, 2017. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a monograph in HSO for personal use (for details see http://www.universitypressscholarship.com/page/privacy-policy).date: 16 December 2017

Introduction

Introduction

Chapter:
(p.1) Chapter One Introduction
Source:
Degenerate Diffusion Operators Arising in Population Biology (AM-185)
Author(s):

Charles L. Epstein

Rafe1 Mazzeo

Publisher:
Princeton University Press
DOI:10.23943/princeton/9780691157122.003.0001

This book proves the existence, uniqueness and regularity results for a class of degenerate elliptic operators known as generalized Kimura diffusions, which act on functions defined on manifolds with corners. It presents a generalization of the Hopf boundary point maximum principle that demonstrates, in the general case, how regularity implies uniqueness. The book is divided in three parts. Part I deals with Wright–Fisher geometry and the maximum principle; Part II is devoted to an analysis of model problems, and includes degenerate Hölder spaces; and Part III discusses generalized Kimura diffusions. This introductory chapter provides an overview of generalized Kimura diffusions and their applications in probability theory, model problems, perturbation theory, main results, and alternate approaches to the study of similar degenerate elliptic and parabolic equations.

Keywords:   generalized Kimura diffusion, manifold with corners, Hopf boundary point, regularity, uniqueness, Wright–Fisher geometry, Hölder space, probability theory, perturbation theory, degenerate elliptic operator

Princeton Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us.