Jump to ContentJump to Main Navigation
Degenerate Diffusion Operators Arising in Population Biology (AM-185)$
Users without a subscription are not able to see the full content.

Charles L. Epstein and Rafe Mazzeo

Print publication date: 2013

Print ISBN-13: 9780691157122

Published to Princeton Scholarship Online: October 2017

DOI: 10.23943/princeton/9780691157122.001.0001

Show Summary Details
Page of

PRINTED FROM PRINCETON SCHOLARSHIP ONLINE (www.princeton.universitypressscholarship.com). (c) Copyright Princeton University Press, 2018. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a monograph in HSO for personal use (for details see www.princeton.universitypressscholarship.com/page/privacy-policy).date: 13 December 2018

Existence of Solutions

Existence of Solutions

(p.181) Chapter Ten Existence of Solutions
Degenerate Diffusion Operators Arising in Population Biology (AM-185)

Charles L. Epstein

Rafe1 Mazzeo

Princeton University Press

This chapter proves existence of solutions to the inhomogeneous problem using the Schauder estimate and analyzes a generalized Kimura diffusion operator, L, defined on a manifold with corners, P. The discussion centers on the solution w = v + u, where v solves the homogeneous Cauchy problem with v(x, 0) = f(x) and u solves the inhomogeneous problem with u(x, 0) = 0. The chapter first provides definitions for the Wright–Fisher–Hölder spaces on a general compact manifold with corners before explaining the steps involved in the existence proof. It then verifies the induction hypothesis and treats the k = 0 case. It also shows how to perform the doubling construction for P and considers the existence of the resolvent operator and a contraction semi-group. Finally, it discusses the problem of higher regularity.

Keywords:   inhomogeneous problem, generalized Kimura diffusion, manifold with corners, homogeneous Cauchy problem, Hölder space, induction hypothesis, doubling, resolvent operator, semi-group, higher regularity

Princeton Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us.