# Boundary Perturbations due to the Presence of Small Cracks

# Boundary Perturbations due to the Presence of Small Cracks

This chapter considers the perturbations of the displacement (or traction) vector that are due to the presence of a small crack with homogeneous Neumann boundary conditions in an elastic medium. It derives an asymptotic formula for the boundary perturbations of the displacement as the length of the crack tends to zero. Using analytical results for the finite Hilbert transform, the chapter derives an asymptotic expansion of the effect of a small Neumann crack on the boundary values of the solution. It also derives the topological derivative of the elastic potential energy functional and proves a useful representation formula for the Kelvin matrix of the fundamental solutions of Lamé system. Finally, it gives an asymptotic formula for the effect of a small linear crack in the time-harmonic regime.

*Keywords:*
small crack, Neumann boundary condition, asymptotic formula, boundary perturbation, displacement, asymptotic expansion, topological derivative, potential energy functional, Kelvin matrix, Lamé system

Princeton Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us.