Jump to ContentJump to Main Navigation
Descent in Buildings (AM-190)$
Users without a subscription are not able to see the full content.

Bernhard Mühlherr, Holger P. Petersson, and Richard M. Weiss

Print publication date: 2015

Print ISBN-13: 9780691166902

Published to Princeton Scholarship Online: October 2017

DOI: 10.23943/princeton/9780691166902.001.0001

Show Summary Details
Page of

PRINTED FROM PRINCETON SCHOLARSHIP ONLINE (www.princeton.universitypressscholarship.com). (c) Copyright Princeton University Press, 2017. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a monograph in HSO for personal use (for details see http://www.universitypressscholarship.com/page/privacy-policy).date: 19 March 2018

Affine Fixed Point Buildings

Affine Fixed Point Buildings

(p.233) Chapter Twenty Seven Affine Fixed Point Buildings
Descent in Buildings (AM-190)

Bernhard M¨uhlherr

Holger P. Petersson

Richard M. Weiss

Princeton University Press

This chapter shows that if Ξ‎ is an affine building and Γ‎ is a finite descent group of Ξ‎, then Γ‎ is a descent group of Ξ‎ and (Ξ‎) is congruent to (Ξ‎). Ξ‎Γ‎ and Ξ‎ can be viewed as metric spaces. The chapter first considers the assumptions that Π‎ is an irreducible affine Coxeter diagram, Ξ‎ is a thick building of type Ξ‎, Γ‎is a finite descent group of Ξ‎, and Tits index �� = (Π‎, Θ‎, A). It then describes apartments that are endowed with reflection hyperplanes and reflection half-spaces before concluding with a theorem about a canonical isomorphism from the fixed point building Ξ‎Γ‎ to (Ξ‎Γ‎).

Keywords:   affine building, metric space, affine Coxeter diagram, thick building, finite descent group, Tits index, apartment, reflection hyperplane, reflection half-space, fixed point building

Princeton Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us.