Jump to ContentJump to Main Navigation
Descent in Buildings (AM-190)$
Users without a subscription are not able to see the full content.

Bernhard Mühlherr, Holger P. Petersson, and Richard M. Weiss

Print publication date: 2015

Print ISBN-13: 9780691166902

Published to Princeton Scholarship Online: October 2017

DOI: 10.23943/princeton/9780691166902.001.0001

Show Summary Details
Page of

PRINTED FROM PRINCETON SCHOLARSHIP ONLINE (www.princeton.universitypressscholarship.com). (c) Copyright Princeton University Press, 2018. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a monograph in HSO for personal use (for details see http://www.universitypressscholarship.com/page/privacy-policy).date: 23 July 2018

Linear Automorphisms

Linear Automorphisms

Chapter:
(p.251) Chapter Twenty Nine Linear Automorphisms
Source:
Descent in Buildings (AM-190)
Author(s):

Bernhard M¨uhlherr

Holger P. Petersson

Richard M. Weiss

Publisher:
Princeton University Press
DOI:10.23943/princeton/9780691166902.003.0029

This chapter considers the notion of a linear automorphism of an arbitrary spherical building satisfying the Moufang property. It begins with the notation whereby Ω‎ = (U₊, U₁, ..., Uₙ) is the root group sequence and x₁, ... , xₙ the isomorphisms obtained by applying the recipe in [60, 16.x] for x = 1, 2, 3, ... or 9 to a parameter system Λ‎ of the suitable type (and for suitable n) and Δ‎ is the corresponding Moufang n-gon. The chapter proceeds by looking at cases where Λ‎ is a proper anisotropic pseudo-quadratic space defined over an involutory set or a quadratic space of type E⁶, E₇ or E₈. It also describes a notation dealing with the Moufang spherical building with Coxeter diagram Λ‎, an apartment of Δ‎, and a chamber of Σ‎.

Keywords:   linear automorphism, Moufang property, root group sequence, anisotropic pseudo-quadratic space, involutory set, quadratic space, Moufang spherical building, Coxeter diagram, apartment, chamber

Princeton Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us.