Jump to ContentJump to Main Navigation
Classification of Pseudo-reductive Groups (AM-191)$
Users without a subscription are not able to see the full content.

Brian Conrad and Gopal Prasad

Print publication date: 2015

Print ISBN-13: 9780691167923

Published to Princeton Scholarship Online: October 2017

DOI: 10.23943/princeton/9780691167923.001.0001

Show Summary Details
Page of

PRINTED FROM PRINCETON SCHOLARSHIP ONLINE (www.princeton.universitypressscholarship.com). (c) Copyright Princeton University Press, 2018. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a monograph in HSO for personal use (for details see www.princeton.universitypressscholarship.com/page/privacy-policy).date: 24 September 2018

Automorphisms, isomorphisms, and Tits classification

Automorphisms, isomorphisms, and Tits classification

Chapter:
6 Automorphisms, isomorphisms, and Tits classification
Source:
Classification of Pseudo-reductive Groups (AM-191)
Author(s):

Brian Conrad

Gopal Prasad

Publisher:
Princeton University Press
DOI:10.23943/princeton/9780691167923.003.0006

This chapter considers automorphisms, isomorphisms, and Tits classification. It begins by establishing a version of the Isomorphism Theorem for pseudo-split pseudo-reductive groups, along with a pseudo-reductive variant of the Isogeny Theorem for split connected semisimple groups. The key to both proofs is a technique to construct pseudo-reductive subgroups of an ambient smooth affine group. Some instructive examples over imperfect fields k of characteristic 2 are given. The chapter goes on to discuss the behavior of the k-group ZG,C with respect to Weil restriction in the pseudoreductive case. It also describes automorphism schemes for pseudo-reductive groups, focusing only on the pseudo-semisimple case because commutative pseudo-reductive groups that are not tori generally have a non-representable automorphism functor. Finally, it examines Tits-style classification, using Dynkin diagrams to express the classification theorem.

Keywords:   automorphism, isomorphism, Isomorphism Theorem, pseudo-reductive group, Isogeny Theorem, Weil restriction, automorphism scheme, automorphism functor, Tits classification, Dynkin diagram

Princeton Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us.