Jump to ContentJump to Main Navigation
Hölder Continuous Euler Flows in Three Dimensions with Compact Support in Time$
Users without a subscription are not able to see the full content.

Philip Isett

Print publication date: 2017

Print ISBN-13: 9780691174822

Published to Princeton Scholarship Online: October 2017

DOI: 10.23943/princeton/9780691174822.001.0001

Show Summary Details
Page of

PRINTED FROM PRINCETON SCHOLARSHIP ONLINE (www.princeton.universitypressscholarship.com). (c) Copyright Princeton University Press, 2017. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a monograph in HSO for personal use (for details see http://www.universitypressscholarship.com/page/privacy-policy).date: 21 April 2018

The Main Iteration Lemma

The Main Iteration Lemma

Chapter:
10 The Main Iteration Lemma
Source:
Hölder Continuous Euler Flows in Three Dimensions with Compact Support in Time
Author(s):

Philip Isett

Publisher:
Princeton University Press
DOI:10.23943/princeton/9780691174822.003.0010

This chapter properly formalizes the Main Lemma, first by discussing the frequency energy levels for the Euler-Reynolds equations. Here the bounds are all consistent with the symmetries of the Euler equations, and the scaling symmetry is reflected by dimensional analysis. The chapter proceeds by making assumptions that are consistent with the Galilean invariance of the Euler equations and the Euler-Reynolds equations. If (v, p, R) solve the Euler-Reynolds equations, then a new solution to Euler-Reynolds with the same frequency energy levels can be obtained. The chapter also states the Main Lemma, taking into account dimensional analysis, energy regularity, and Onsager's conjecture. Finally, it introduces the main theorem (Theorem 10.1), which states that there exists a nonzero solution to the Euler equations with compact support in time.

Keywords:   frequency energy levels, Euler-Reynolds equations, scaling symmetry, dimensional analysis, Euler equations, Main Lemma, energy regularity, Onsager's conjecture, nonzero solution

Princeton Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us.