Jump to ContentJump to Main Navigation
Hölder Continuous Euler Flows in Three Dimensions with Compact Support in Time$
Users without a subscription are not able to see the full content.

Philip Isett

Print publication date: 2017

Print ISBN-13: 9780691174822

Published to Princeton Scholarship Online: October 2017

DOI: 10.23943/princeton/9780691174822.001.0001

Show Summary Details
Page of

PRINTED FROM PRINCETON SCHOLARSHIP ONLINE (www.princeton.universitypressscholarship.com). (c) Copyright Princeton University Press, 2017. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a monograph in HSO for personal use (for details see http://www.universitypressscholarship.com/page/privacy-policy).date: 21 January 2018

Gluing Solutions

Gluing Solutions

Chapter:
12 Gluing Solutions
Source:
Hölder Continuous Euler Flows in Three Dimensions with Compact Support in Time
Author(s):

Philip Isett

Publisher:
Princeton University Press
DOI:10.23943/princeton/9780691174822.003.0012

This chapter deals with the gluing of solutions and the relevant theorem (Theorem 12.1), which states the condition for a Hölder continuous solution to exist. By taking a Galilean transformation if necessary, the solution can be assumed to have zero total momentum. The cut off velocity and pressure form a smooth solution to the Euler-Reynolds equations with compact support when coupled to a smooth stress tensor. The proof of Theorem (12.1) proceeds by iterating Lemma (10.1) just as in the proof of Theorem (10.1). Applying another Galilean transformation to return to the original frame of reference, the theorem is obtained.

Keywords:   continuous solution, Galilean transformation, momentum, velocity, pressure, Euler-Reynolds equations, smooth stress tensor

Princeton Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us.