Jump to ContentJump to Main Navigation
Asymptotic Differential Algebra and Model Theory of Transseries$
Users without a subscription are not able to see the full content.

Matthias Aschenbrenner, Lou van den Dries, and Joris van der Hoeven

Print publication date: 2017

Print ISBN-13: 9780691175423

Published to Princeton Scholarship Online: October 2017

DOI: 10.23943/princeton/9780691175423.001.0001

Show Summary Details
Page of

PRINTED FROM PRINCETON SCHOLARSHIP ONLINE (www.princeton.universitypressscholarship.com). (c) Copyright Princeton University Press, 2017. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a monograph in HSO for personal use (for details see http://www.universitypressscholarship.com/page/privacy-policy).date: 26 April 2018

H-Fields

H-Fields

Chapter:
(p.433) Chapter Ten H-Fields
Source:
Asymptotic Differential Algebra and Model Theory of Transseries
Author(s):

Matthias Aschenbrenner

Lou van den Dries

Joris van der Hoeven

Publisher:
Princeton University Press
DOI:10.23943/princeton/9780691175423.003.0011

This chapter considers H-fields, pre-differential-valued fields with a field ordering that interacts with the valuation and derivation. Axiomatizing this interaction yields the notion of a pre-H-field; H-fields are d-valued pre-H-fields. The chapter begins by upgrading some basic facts on asymptotic fields to pre-d-valued fields; for example, algebraic extensions of pre-d-valued fields are pre-d-valued, not just asymptotic. It then adjoins integrals to pre-d-valued fields of H-type. It shows that every pre-d-valued field of H-type has a canonical differential-valued extension. It also adjoins exponential integrals to pre-d-valued fields of H-type. Finally, it describes Liouville closed H-fields, and especially the uniqueness properties of Liouville closure.

Keywords:   valuation, derivation, H-field, asymptotic field, integral, differential-valued extension, exponential integral, Liouville closed H-field, Liouville closure, pre-differential-valued field

Princeton Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us.