*Ahmed Abbes, Michel Gros, and Takeshi Tsuji*

- Published in print:
- 2016
- Published Online:
- October 2017
- ISBN:
- 9780691170282
- eISBN:
- 9781400881239
- Item type:
- book

- Publisher:
- Princeton University Press
- DOI:
- 10.23943/princeton/9780691170282.001.0001
- Subject:
- Mathematics, Algebra

The p-adic Simpson correspondence, recently initiated by Gerd Faltings, aims at describing all p-adic representations of the fundamental group of a proper smooth variety over a p-adic field in terms ...
More

The p-adic Simpson correspondence, recently initiated by Gerd Faltings, aims at describing all p-adic representations of the fundamental group of a proper smooth variety over a p-adic field in terms of linear algebra—namely Higgs bundles. This book undertakes a systematic development of the theory following two new approaches. It mainly focuses on generalized representations of the fundamental group that are p-adically close to the trivial representation. The first approach relies on a new family of period rings built from the torsor of deformations of the variety over a universal p-adic thickening defined by J. M. Fontaine. The second approach introduces a crystalline-type topos and replaces the notion of Higgs bundles with that of Higgs isocrystals. The book shows the compatibility of the two constructions and the compatibility of the correspondence with the natural cohomologies. The last part of the book contains results of wider interest in p-adic Hodge theory. The reader will find a concise introduction to Faltings' theory of almost étale extensions and a chapter devoted to the Faltings topos. Though this topos is the general framework for Faltings' approach in p-adic Hodge theory, it remains relatively unexplored.Less

The *p*-adic Simpson correspondence, recently initiated by Gerd Faltings, aims at describing all *p*-adic representations of the fundamental group of a proper smooth variety over a *p*-adic field in terms of linear algebra—namely Higgs bundles. This book undertakes a systematic development of the theory following two new approaches. It mainly focuses on generalized representations of the fundamental group that are *p*-adically close to the trivial representation. The first approach relies on a new family of period rings built from the torsor of deformations of the variety over a universal *p*-adic thickening defined by J. M. Fontaine. The second approach introduces a crystalline-type topos and replaces the notion of Higgs bundles with that of Higgs isocrystals. The book shows the compatibility of the two constructions and the compatibility of the correspondence with the natural cohomologies. The last part of the book contains results of wider interest in *p*-adic Hodge theory. The reader will find a concise introduction to Faltings' theory of almost étale extensions and a chapter devoted to the Faltings topos. Though this topos is the general framework for Faltings' approach in *p*-adic Hodge theory, it remains relatively unexplored.

*Leiba Rodman*

- Published in print:
- 2014
- Published Online:
- October 2017
- ISBN:
- 9780691161853
- eISBN:
- 9781400852741
- Item type:
- book

- Publisher:
- Princeton University Press
- DOI:
- 10.23943/princeton/9780691161853.001.0001
- Subject:
- Mathematics, Algebra

Quaternions are a number system that has become increasingly useful for representing the rotations of objects in three-dimensional space and has important applications in theoretical and applied ...
More

Quaternions are a number system that has become increasingly useful for representing the rotations of objects in three-dimensional space and has important applications in theoretical and applied mathematics, physics, computer science, and engineering. This is the first book to provide a systematic, accessible, and self-contained exposition of quaternion linear algebra. It features previously unpublished research results with complete proofs and many open problems at various levels, as well as more than 200 exercises to facilitate use by students and instructors. Applications presented in the book include numerical ranges, invariant semidefinite subspaces, differential equations with symmetries, and matrix equations. Designed for researchers and students across a variety of disciplines, the book can be read by anyone with a background in linear algebra, rudimentary complex analysis, and some multivariable calculus. Instructors will find it useful as a complementary text for undergraduate linear algebra courses or as a basis for a graduate course in linear algebra. The open problems can serve as research projects for undergraduates, topics for graduate students, or problems to be tackled by professional research mathematicians. The book is also an invaluable reference tool for researchers in fields where techniques based on quaternion analysis are used.Less

Quaternions are a number system that has become increasingly useful for representing the rotations of objects in three-dimensional space and has important applications in theoretical and applied mathematics, physics, computer science, and engineering. This is the first book to provide a systematic, accessible, and self-contained exposition of quaternion linear algebra. It features previously unpublished research results with complete proofs and many open problems at various levels, as well as more than 200 exercises to facilitate use by students and instructors. Applications presented in the book include numerical ranges, invariant semidefinite subspaces, differential equations with symmetries, and matrix equations. Designed for researchers and students across a variety of disciplines, the book can be read by anyone with a background in linear algebra, rudimentary complex analysis, and some multivariable calculus. Instructors will find it useful as a complementary text for undergraduate linear algebra courses or as a basis for a graduate course in linear algebra. The open problems can serve as research projects for undergraduates, topics for graduate students, or problems to be tackled by professional research mathematicians. The book is also an invaluable reference tool for researchers in fields where techniques based on quaternion analysis are used.