*Joram Lindenstrauss, David Preiss, and Jaroslav Tier*

- Published in print:
- 2012
- Published Online:
- October 2017
- ISBN:
- 9780691153551
- eISBN:
- 9781400842698
- Item type:
- book

- Publisher:
- Princeton University Press
- DOI:
- 10.23943/princeton/9780691153551.001.0001
- Subject:
- Mathematics, Analysis

This book makes a significant inroad into the unexpectedly difficult question of existence of Fréchet derivatives of Lipschitz maps of Banach spaces into higher dimensional spaces. Because the ...
More

This book makes a significant inroad into the unexpectedly difficult question of existence of Fréchet derivatives of Lipschitz maps of Banach spaces into higher dimensional spaces. Because the question turns out to be closely related to porous sets in Banach spaces, it provides a bridge between descriptive set theory and the classical topic of existence of derivatives of vector-valued Lipschitz functions. The topic is relevant to classical analysis and descriptive set theory on Banach spaces. The book opens several new research directions in this area of geometric nonlinear functional analysis. The new methods developed here include a game approach to perturbational variational principles that is of independent interest. Detailed explanation of the underlying ideas and motivation behind the proofs of the new results on Fréchet differentiability of vector-valued functions should make these arguments accessible to a wider audience. The most important special case of the differentiability results, that Lipschitz mappings from a Hilbert space into the plane have points of Fréchet differentiability, is given its own chapter with a proof that is independent of much of the work done to prove more general results. The book raises several open questions concerning its two main topics.Less

This book makes a significant inroad into the unexpectedly difficult question of existence of Fréchet derivatives of Lipschitz maps of Banach spaces into higher dimensional spaces. Because the question turns out to be closely related to porous sets in Banach spaces, it provides a bridge between descriptive set theory and the classical topic of existence of derivatives of vector-valued Lipschitz functions. The topic is relevant to classical analysis and descriptive set theory on Banach spaces. The book opens several new research directions in this area of geometric nonlinear functional analysis. The new methods developed here include a game approach to perturbational variational principles that is of independent interest. Detailed explanation of the underlying ideas and motivation behind the proofs of the new results on Fréchet differentiability of vector-valued functions should make these arguments accessible to a wider audience. The most important special case of the differentiability results, that Lipschitz mappings from a Hilbert space into the plane have points of Fréchet differentiability, is given its own chapter with a proof that is independent of much of the work done to prove more general results. The book raises several open questions concerning its two main topics.

*Brian Street*

- Published in print:
- 2014
- Published Online:
- October 2017
- ISBN:
- 9780691162515
- eISBN:
- 9781400852758
- Item type:
- book

- Publisher:
- Princeton University Press
- DOI:
- 10.23943/princeton/9780691162515.001.0001
- Subject:
- Mathematics, Analysis

This book develops a new theory of multi-parameter singular integrals associated with Carnot–Carathéodory balls. The book first details the classical theory of Calderón–Zygmund singular integrals and ...
More

This book develops a new theory of multi-parameter singular integrals associated with Carnot–Carathéodory balls. The book first details the classical theory of Calderón–Zygmund singular integrals and applications to linear partial differential equations. It then outlines the theory of multi-parameter Carnot–Carathéodory geometry, where the main tool is a quantitative version of the classical theorem of Frobenius. The book then gives several examples of multi-parameter singular integrals arising naturally in various problems. The final chapter of the book develops a general theory of singular integrals that generalizes and unifies these examples. This is one of the first general theories of multi-parameter singular integrals that goes beyond the product theory of singular integrals and their analogs. This book will interest graduate students and researchers working in singular integrals and related fields.Less

This book develops a new theory of multi-parameter singular integrals associated with Carnot–Carathéodory balls. The book first details the classical theory of Calderón–Zygmund singular integrals and applications to linear partial differential equations. It then outlines the theory of multi-parameter Carnot–Carathéodory geometry, where the main tool is a quantitative version of the classical theorem of Frobenius. The book then gives several examples of multi-parameter singular integrals arising naturally in various problems. The final chapter of the book develops a general theory of singular integrals that generalizes and unifies these examples. This is one of the first general theories of multi-parameter singular integrals that goes beyond the product theory of singular integrals and their analogs. This book will interest graduate students and researchers working in singular integrals and related fields.

*Mark Green, Phillip A. Griffiths, and Matt Kerr*

- Published in print:
- 2012
- Published Online:
- October 2017
- ISBN:
- 9780691154244
- eISBN:
- 9781400842735
- Item type:
- book

- Publisher:
- Princeton University Press
- DOI:
- 10.23943/princeton/9780691154244.001.0001
- Subject:
- Mathematics, Analysis

Mumford-Tate groups are the fundamental symmetry groups of Hodge theory, a subject which rests at the center of contemporary complex algebraic geometry. This book is the first comprehensive ...
More

Mumford-Tate groups are the fundamental symmetry groups of Hodge theory, a subject which rests at the center of contemporary complex algebraic geometry. This book is the first comprehensive exploration of Mumford-Tate groups and domains. Containing basic theory and a wealth of new views and results, it is an essential resource for graduate students and researchers. Although Mumford-Tate groups can be defined for general structures, their theory and use to date has mainly been in the classical case of abelian varieties. While the book does examine this area, it focuses on the nonclassical case. The general theory turns out to be very rich, such as in the unexpected connections of finite dimensional and infinite dimensional representation theory of real, semisimple Lie groups. The book gives the complete classification of Hodge representations, a topic that should become a standard in the finite-dimensional representation theory of noncompact, real, semisimple Lie groups. It also indicates that in the future, a connection seems ready to be made between Lie groups that admit discrete series representations and the study of automorphic cohomology on quotients of Mumford-Tate domains by arithmetic groups. Bringing together complex geometry, representation theory, and arithmetic, this book opens up a fresh perspective on an important subject.Less

Mumford-Tate groups are the fundamental symmetry groups of Hodge theory, a subject which rests at the center of contemporary complex algebraic geometry. This book is the first comprehensive exploration of Mumford-Tate groups and domains. Containing basic theory and a wealth of new views and results, it is an essential resource for graduate students and researchers. Although Mumford-Tate groups can be defined for general structures, their theory and use to date has mainly been in the classical case of abelian varieties. While the book does examine this area, it focuses on the nonclassical case. The general theory turns out to be very rich, such as in the unexpected connections of finite dimensional and infinite dimensional representation theory of real, semisimple Lie groups. The book gives the complete classification of Hodge representations, a topic that should become a standard in the finite-dimensional representation theory of noncompact, real, semisimple Lie groups. It also indicates that in the future, a connection seems ready to be made between Lie groups that admit discrete series representations and the study of automorphic cohomology on quotients of Mumford-Tate domains by arithmetic groups. Bringing together complex geometry, representation theory, and arithmetic, this book opens up a fresh perspective on an important subject.