Charles Fefferman and C. Robin Graham
- Published in print:
- 2011
- Published Online:
- October 2017
- ISBN:
- 9780691153131
- eISBN:
- 9781400840588
- Item type:
- book
- Publisher:
- Princeton University Press
- DOI:
- 10.23943/princeton/9780691153131.001.0001
- Subject:
- Mathematics, Geometry / Topology
This book develops and applies a theory of the ambient metric in conformal geometry. This is a Lorentz metric in n+2 dimensions that encodes a conformal class of metrics in n dimensions. The ambient ...
More
This book develops and applies a theory of the ambient metric in conformal geometry. This is a Lorentz metric in n+2 dimensions that encodes a conformal class of metrics in n dimensions. The ambient metric has an alternate incarnation as the Poincaré metric, a metric in n+1 dimensions having the conformal manifold as its conformal infinity. In this realization, the construction has played a central role in the AdS/CFT correspondence in physics. The existence and uniqueness of the ambient metric at the formal power series level is treated in detail. This includes the derivation of the ambient obstruction tensor and an explicit analysis of the special cases of conformally flat and conformally Einstein spaces. Poincaré metrics are introduced and shown to be equivalent to the ambient formulation. Self-dual Poincaré metrics in four dimensions are considered as a special case, leading to a formal power series proof of LeBrun's collar neighborhood theorem proved originally using twistor methods. Conformal curvature tensors are introduced and their fundamental properties are established. A jet isomorphism theorem is established for conformal geometry, resulting in a representation of the space of jets of conformal structures at a point in terms of conformal curvature tensors. The book concludes with a construction and characterization of scalar conformal invariants in terms of ambient curvature, applying results in parabolic invariant theory.Less
This book develops and applies a theory of the ambient metric in conformal geometry. This is a Lorentz metric in n+2 dimensions that encodes a conformal class of metrics in n dimensions. The ambient metric has an alternate incarnation as the Poincaré metric, a metric in n+1 dimensions having the conformal manifold as its conformal infinity. In this realization, the construction has played a central role in the AdS/CFT correspondence in physics. The existence and uniqueness of the ambient metric at the formal power series level is treated in detail. This includes the derivation of the ambient obstruction tensor and an explicit analysis of the special cases of conformally flat and conformally Einstein spaces. Poincaré metrics are introduced and shown to be equivalent to the ambient formulation. Self-dual Poincaré metrics in four dimensions are considered as a special case, leading to a formal power series proof of LeBrun's collar neighborhood theorem proved originally using twistor methods. Conformal curvature tensors are introduced and their fundamental properties are established. A jet isomorphism theorem is established for conformal geometry, resulting in a representation of the space of jets of conformal structures at a point in terms of conformal curvature tensors. The book concludes with a construction and characterization of scalar conformal invariants in terms of ambient curvature, applying results in parabolic invariant theory.
Gisbert Wüstholz and Clemens Fuchs (eds)
- Published in print:
- 2019
- Published Online:
- May 2020
- ISBN:
- 9780691193779
- eISBN:
- 9780691197548
- Item type:
- book
- Publisher:
- Princeton University Press
- DOI:
- 10.23943/princeton/9780691193779.001.0001
- Subject:
- Mathematics, Geometry / Topology
This book presents highlights of recent work in arithmetic algebraic geometry by some of the world's leading mathematicians. Together, these 2016 lectures—which were delivered in celebration of the ...
More
This book presents highlights of recent work in arithmetic algebraic geometry by some of the world's leading mathematicians. Together, these 2016 lectures—which were delivered in celebration of the tenth anniversary of the annual summer workshops in Alpbach, Austria—provide an introduction to high-level research on three topics: Shimura varieties, hyperelliptic continued fractions and generalized Jacobians, and Faltings heights and L-functions. The book consists of notes, written by young researchers, on three sets of lectures or minicourses given at Alpbach. The first course contains recent results dealing with the local Langlands conjecture. The fundamental question is whether for a given datum there exists a so-called local Shimura variety. In some cases, they exist in the category of rigid analytic spaces; in others, one has to use Scholze's perfectoid spaces. The second course addresses the famous Pell equation—not in the classical setting but rather with the so-called polynomial Pell equation, where the integers are replaced by polynomials in one variable with complex coefficients, which leads to the study of hyperelliptic continued fractions and generalized Jacobians. The third course originates in the Chowla–Selberg formula and relates values of the L-function for elliptic curves with the height of Heegner points on the curves. It proves the Gross–Zagier formula on Shimura curves and verifies the Colmez conjecture on average.Less
This book presents highlights of recent work in arithmetic algebraic geometry by some of the world's leading mathematicians. Together, these 2016 lectures—which were delivered in celebration of the tenth anniversary of the annual summer workshops in Alpbach, Austria—provide an introduction to high-level research on three topics: Shimura varieties, hyperelliptic continued fractions and generalized Jacobians, and Faltings heights and L-functions. The book consists of notes, written by young researchers, on three sets of lectures or minicourses given at Alpbach. The first course contains recent results dealing with the local Langlands conjecture. The fundamental question is whether for a given datum there exists a so-called local Shimura variety. In some cases, they exist in the category of rigid analytic spaces; in others, one has to use Scholze's perfectoid spaces. The second course addresses the famous Pell equation—not in the classical setting but rather with the so-called polynomial Pell equation, where the integers are replaced by polynomials in one variable with complex coefficients, which leads to the study of hyperelliptic continued fractions and generalized Jacobians. The third course originates in the Chowla–Selberg formula and relates values of the L-function for elliptic curves with the height of Heegner points on the curves. It proves the Gross–Zagier formula on Shimura curves and verifies the Colmez conjecture on average.
Kai-Wen Lan
- Published in print:
- 2013
- Published Online:
- October 2017
- ISBN:
- 9780691156545
- eISBN:
- 9781400846016
- Item type:
- book
- Publisher:
- Princeton University Press
- DOI:
- 10.23943/princeton/9780691156545.001.0001
- Subject:
- Mathematics, Geometry / Topology
By studying the degeneration of abelian varieties with PEL structures, this book explains the compactifications of smooth integral models of all PEL-type Shimura varieties, providing the logical ...
More
By studying the degeneration of abelian varieties with PEL structures, this book explains the compactifications of smooth integral models of all PEL-type Shimura varieties, providing the logical foundation for several exciting recent developments. PEL-type Shimura varieties, which are natural generalizations of modular curves, are useful for studying the arithmetic properties of automorphic forms and automorphic representations, and they have played important roles in the development of the Langlands program. As with modular curves, it is desirable to have integral models of compactifications of PEL-type Shimura varieties that can be described in sufficient detail near the boundary, which this book explains in detail. Through the discussion, the book generalizes the theory of degenerations of polarized abelian varieties and the application of that theory to the construction of toroidal and minimal compactifications of Siegel moduli schemes over the integers (as developed by Mumford, Faltings, and Chai). The book is designed to be accessible to graduate students who have an understanding of schemes and abelian varieties.Less
By studying the degeneration of abelian varieties with PEL structures, this book explains the compactifications of smooth integral models of all PEL-type Shimura varieties, providing the logical foundation for several exciting recent developments. PEL-type Shimura varieties, which are natural generalizations of modular curves, are useful for studying the arithmetic properties of automorphic forms and automorphic representations, and they have played important roles in the development of the Langlands program. As with modular curves, it is desirable to have integral models of compactifications of PEL-type Shimura varieties that can be described in sufficient detail near the boundary, which this book explains in detail. Through the discussion, the book generalizes the theory of degenerations of polarized abelian varieties and the application of that theory to the construction of toroidal and minimal compactifications of Siegel moduli schemes over the integers (as developed by Mumford, Faltings, and Chai). The book is designed to be accessible to graduate students who have an understanding of schemes and abelian varieties.
Peter Scholze and Jared Weinstein
- Published in print:
- 2020
- Published Online:
- January 2021
- ISBN:
- 9780691202082
- eISBN:
- 9780691202150
- Item type:
- book
- Publisher:
- Princeton University Press
- DOI:
- 10.23943/princeton/9780691202082.001.0001
- Subject:
- Mathematics, Geometry / Topology
This book presents an important breakthrough in arithmetic geometry. In 2014, this book's author delivered a series of lectures at the University of California, Berkeley, on new ideas in the theory ...
More
This book presents an important breakthrough in arithmetic geometry. In 2014, this book's author delivered a series of lectures at the University of California, Berkeley, on new ideas in the theory of p-adic geometry. Building on his discovery of perfectoid spaces, the author introduced the concept of “diamonds,” which are to perfectoid spaces what algebraic spaces are to schemes. The introduction of diamonds, along with the development of a mixed-characteristic shtuka, set the stage for a critical advance in the discipline. This book shows that the moduli space of mixed-characteristic shtukas is a diamond, raising the possibility of using the cohomology of such spaces to attack the Langlands conjectures for a reductive group over a p-adic field. The book follows the informal style of the original Berkeley lectures, with one chapter per lecture. It explores p-adic and perfectoid spaces before laying out the newer theory of shtukas and their moduli spaces. Points of contact with other threads of the subject, including p-divisible groups, p-adic Hodge theory, and Rapoport-Zink spaces, are thoroughly explained.Less
This book presents an important breakthrough in arithmetic geometry. In 2014, this book's author delivered a series of lectures at the University of California, Berkeley, on new ideas in the theory of p-adic geometry. Building on his discovery of perfectoid spaces, the author introduced the concept of “diamonds,” which are to perfectoid spaces what algebraic spaces are to schemes. The introduction of diamonds, along with the development of a mixed-characteristic shtuka, set the stage for a critical advance in the discipline. This book shows that the moduli space of mixed-characteristic shtukas is a diamond, raising the possibility of using the cohomology of such spaces to attack the Langlands conjectures for a reductive group over a p-adic field. The book follows the informal style of the original Berkeley lectures, with one chapter per lecture. It explores p-adic and perfectoid spaces before laying out the newer theory of shtukas and their moduli spaces. Points of contact with other threads of the subject, including p-divisible groups, p-adic Hodge theory, and Rapoport-Zink spaces, are thoroughly explained.
Claire Voisin
- Published in print:
- 2014
- Published Online:
- October 2017
- ISBN:
- 9780691160504
- eISBN:
- 9781400850532
- Item type:
- book
- Publisher:
- Princeton University Press
- DOI:
- 10.23943/princeton/9780691160504.001.0001
- Subject:
- Mathematics, Geometry / Topology
This book provides an introduction to algebraic cycles on complex algebraic varieties, to the major conjectures relating them to cohomology, and even more precisely to Hodge structures on cohomology. ...
More
This book provides an introduction to algebraic cycles on complex algebraic varieties, to the major conjectures relating them to cohomology, and even more precisely to Hodge structures on cohomology. The book is intended for both students and researchers, and not only presents a survey of the geometric methods developed in the last thirty years to understand the famous Bloch-Beilinson conjectures, but also examines recent work by the author. It focuses on two central objects: the diagonal of a variety—and the partial Bloch-Srinivas type decompositions it may have depending on the size of Chow groups—as well as its small diagonal, which is the right object to consider in order to understand the ring structure on Chow groups and cohomology. An exploration of a sampling of recent works by the author looks at the relation, conjectured in general by Bloch and Beilinson, between the coniveau of general complete intersections and their Chow groups and a very particular property satisfied by the Chow ring of K3 surfaces and conjecturally by hyper-Kähler manifolds. In particular, the book delves into arguments originating in Nori's work that have been further developed by others.Less
This book provides an introduction to algebraic cycles on complex algebraic varieties, to the major conjectures relating them to cohomology, and even more precisely to Hodge structures on cohomology. The book is intended for both students and researchers, and not only presents a survey of the geometric methods developed in the last thirty years to understand the famous Bloch-Beilinson conjectures, but also examines recent work by the author. It focuses on two central objects: the diagonal of a variety—and the partial Bloch-Srinivas type decompositions it may have depending on the size of Chow groups—as well as its small diagonal, which is the right object to consider in order to understand the ring structure on Chow groups and cohomology. An exploration of a sampling of recent works by the author looks at the relation, conjectured in general by Bloch and Beilinson, between the coniveau of general complete intersections and their Chow groups and a very particular property satisfied by the Chow ring of K3 surfaces and conjecturally by hyper-Kähler manifolds. In particular, the book delves into arguments originating in Nori's work that have been further developed by others.
Paula Tretkoff
- Published in print:
- 2016
- Published Online:
- October 2017
- ISBN:
- 9780691144771
- eISBN:
- 9781400881253
- Item type:
- book
- Publisher:
- Princeton University Press
- DOI:
- 10.23943/princeton/9780691144771.001.0001
- Subject:
- Mathematics, Geometry / Topology
This book introduces the theory of complex surfaces through a comprehensive look at finite covers of the projective plane branched along line arrangements. It emphasizes those finite coverings that ...
More
This book introduces the theory of complex surfaces through a comprehensive look at finite covers of the projective plane branched along line arrangements. It emphasizes those finite coverings that are free quotients of the complex 2-ball. The book also includes a background on the classical Gauss hypergeometric function of one variable, and a chapter on the Appell two-variable F1 hypergeometric function. The book began as a set of lecture notes, taken by the author, of a course given by Friedrich Hirzebruch at ETH Zürich in 1996. The lecture notes were then considerably expanded over a number of years. In this book, the author has expanded those notes even further, still stressing examples offered by finite covers of line arrangements. The book is largely self-contained and foundational material is introduced and explained as needed, but not treated in full detail. References to omitted material are provided for interested readers. Aimed at graduate students and researchers, this is an accessible account of a highly informative area of complex geometry.Less
This book introduces the theory of complex surfaces through a comprehensive look at finite covers of the projective plane branched along line arrangements. It emphasizes those finite coverings that are free quotients of the complex 2-ball. The book also includes a background on the classical Gauss hypergeometric function of one variable, and a chapter on the Appell two-variable F1 hypergeometric function. The book began as a set of lecture notes, taken by the author, of a course given by Friedrich Hirzebruch at ETH Zürich in 1996. The lecture notes were then considerably expanded over a number of years. In this book, the author has expanded those notes even further, still stressing examples offered by finite covers of line arrangements. The book is largely self-contained and foundational material is introduced and explained as needed, but not treated in full detail. References to omitted material are provided for interested readers. Aimed at graduate students and researchers, this is an accessible account of a highly informative area of complex geometry.
Spyros Alexakis
- Published in print:
- 2012
- Published Online:
- October 2017
- ISBN:
- 9780691153476
- eISBN:
- 9781400842728
- Item type:
- book
- Publisher:
- Princeton University Press
- DOI:
- 10.23943/princeton/9780691153476.001.0001
- Subject:
- Mathematics, Geometry / Topology
This book addresses a basic question in differential geometry that was first considered by physicists Stanley Deser and Adam Schwimmer in 1993 in their study of conformal anomalies. The question ...
More
This book addresses a basic question in differential geometry that was first considered by physicists Stanley Deser and Adam Schwimmer in 1993 in their study of conformal anomalies. The question concerns conformally invariant functionals on the space of Riemannian metrics over a given manifold. These functionals act on a metric by first constructing a Riemannian scalar out of it, and then integrating this scalar over the manifold. Suppose this integral remains invariant under conformal re-scalings of the underlying metric. What information can one then deduce about the Riemannian scalar? This book asserts that the Riemannian scalar must be a linear combination of three obvious candidates, each of which clearly satisfies the required property: a local conformal invariant, a divergence of a Riemannian vector field, and the Chern–Gauss–Bonnet integrand. The book provides a proof of this conjecture. The result itself sheds light on the algebraic structure of conformal anomalies, which appear in many settings in theoretical physics. It also clarifies the geometric significance of the renormalized volume of asymptotically hyperbolic Einstein manifolds. The methods introduced here make an interesting connection between algebraic properties of local invariants—such as the classical Riemannian invariants and the more recently studied conformal invariants—and the study of global invariants, in this case conformally invariant integrals.Less
This book addresses a basic question in differential geometry that was first considered by physicists Stanley Deser and Adam Schwimmer in 1993 in their study of conformal anomalies. The question concerns conformally invariant functionals on the space of Riemannian metrics over a given manifold. These functionals act on a metric by first constructing a Riemannian scalar out of it, and then integrating this scalar over the manifold. Suppose this integral remains invariant under conformal re-scalings of the underlying metric. What information can one then deduce about the Riemannian scalar? This book asserts that the Riemannian scalar must be a linear combination of three obvious candidates, each of which clearly satisfies the required property: a local conformal invariant, a divergence of a Riemannian vector field, and the Chern–Gauss–Bonnet integrand. The book provides a proof of this conjecture. The result itself sheds light on the algebraic structure of conformal anomalies, which appear in many settings in theoretical physics. It also clarifies the geometric significance of the renormalized volume of asymptotically hyperbolic Einstein manifolds. The methods introduced here make an interesting connection between algebraic properties of local invariants—such as the classical Riemannian invariants and the more recently studied conformal invariants—and the study of global invariants, in this case conformally invariant integrals.
Isroil A. Ikromov and Detlef Müller
- Published in print:
- 2016
- Published Online:
- October 2017
- ISBN:
- 9780691170541
- eISBN:
- 9781400881246
- Item type:
- book
- Publisher:
- Princeton University Press
- DOI:
- 10.23943/princeton/9780691170541.001.0001
- Subject:
- Mathematics, Geometry / Topology
This is the first book to present a complete characterization of Stein–Tomas-type Fourier restriction estimates for large classes of smooth hypersurfaces in three dimensions, including all ...
More
This is the first book to present a complete characterization of Stein–Tomas-type Fourier restriction estimates for large classes of smooth hypersurfaces in three dimensions, including all real-analytic hypersurfaces. The range of Lebesgue spaces for which these estimates are valid is described in terms of Newton polyhedra associated to the given surface. The book begins with Elias M. Stein's concept of Fourier restriction and some relations between the decay of the Fourier transform of the surface measure and Stein–Tomas-type restriction estimates. Varchenko's ideas relating Fourier decay to associated Newton polyhedra are briefly explained, particularly the concept of adapted coordinates and the notion of height. It turns out that these classical tools essentially suffice already to treat the case where there exist linear adapted coordinates, and thus the book concentrates on the remaining case. Here the notion of r-height is introduced, which proves to be the right new concept. The book then describes decomposition techniques and related stopping time algorithms that allow to partition the given surface into various pieces, which can eventually be handled by means of oscillatory integral estimates. Different interpolation techniques are presented and used, from complex to more recent real methods by Bak and Seeger. Fourier restriction plays an important role in several fields, in particular in real and harmonic analysis, number theory, and PDEs. This book will interest graduate students and researchers working in such fields.Less
This is the first book to present a complete characterization of Stein–Tomas-type Fourier restriction estimates for large classes of smooth hypersurfaces in three dimensions, including all real-analytic hypersurfaces. The range of Lebesgue spaces for which these estimates are valid is described in terms of Newton polyhedra associated to the given surface. The book begins with Elias M. Stein's concept of Fourier restriction and some relations between the decay of the Fourier transform of the surface measure and Stein–Tomas-type restriction estimates. Varchenko's ideas relating Fourier decay to associated Newton polyhedra are briefly explained, particularly the concept of adapted coordinates and the notion of height. It turns out that these classical tools essentially suffice already to treat the case where there exist linear adapted coordinates, and thus the book concentrates on the remaining case. Here the notion of r-height is introduced, which proves to be the right new concept. The book then describes decomposition techniques and related stopping time algorithms that allow to partition the given surface into various pieces, which can eventually be handled by means of oscillatory integral estimates. Different interpolation techniques are presented and used, from complex to more recent real methods by Bak and Seeger. Fourier restriction plays an important role in several fields, in particular in real and harmonic analysis, number theory, and PDEs. This book will interest graduate students and researchers working in such fields.
Jérémie Szeftel and Sergiu Klainerman
- Published in print:
- 2020
- Published Online:
- May 2021
- ISBN:
- 9780691212425
- eISBN:
- 9780691218526
- Item type:
- book
- Publisher:
- Princeton University Press
- DOI:
- 10.23943/princeton/9780691212425.001.0001
- Subject:
- Mathematics, Geometry / Topology
One of the major outstanding questions about black holes is whether they remain stable when subject to small perturbations. An affirmative answer to this question would provide strong theoretical ...
More
One of the major outstanding questions about black holes is whether they remain stable when subject to small perturbations. An affirmative answer to this question would provide strong theoretical support for the physical reality of black holes. This book takes an important step toward solving the fundamental black hole stability problem in general relativity by establishing the stability of nonrotating black holes — or Schwarzschild spacetimes — under so-called polarized perturbations. This restriction ensures that the final state of evolution is itself a Schwarzschild space. Building on the remarkable advances made in the past fifteen years in establishing quantitative linear stability, the book introduces a series of new ideas to deal with the strongly nonlinear, covariant features of the Einstein equations. Most preeminent among them is the general covariant modulation (GCM) procedure that allows them to determine the center of mass frame and the mass of the final black hole state. Essential reading for mathematicians and physicists alike, the book introduces a rich theoretical framework relevant to situations such as the full setting of the Kerr stability conjecture.Less
One of the major outstanding questions about black holes is whether they remain stable when subject to small perturbations. An affirmative answer to this question would provide strong theoretical support for the physical reality of black holes. This book takes an important step toward solving the fundamental black hole stability problem in general relativity by establishing the stability of nonrotating black holes — or Schwarzschild spacetimes — under so-called polarized perturbations. This restriction ensures that the final state of evolution is itself a Schwarzschild space. Building on the remarkable advances made in the past fifteen years in establishing quantitative linear stability, the book introduces a series of new ideas to deal with the strongly nonlinear, covariant features of the Einstein equations. Most preeminent among them is the general covariant modulation (GCM) procedure that allows them to determine the center of mass frame and the mass of the final black hole state. Essential reading for mathematicians and physicists alike, the book introduces a rich theoretical framework relevant to situations such as the full setting of the Kerr stability conjecture.
Eduardo Cattani, Fouad El Zein, Phillip A. Griffiths, and Lê Dung Tráng
- Published in print:
- 2014
- Published Online:
- October 2017
- ISBN:
- 9780691161341
- eISBN:
- 9781400851478
- Item type:
- book
- Publisher:
- Princeton University Press
- DOI:
- 10.23943/princeton/9780691161341.001.0001
- Subject:
- Mathematics, Geometry / Topology
This book provides a comprehensive and up-to-date introduction to Hodge theory—one of the central and most vibrant areas of contemporary mathematics—from leading specialists on the subject. The ...
More
This book provides a comprehensive and up-to-date introduction to Hodge theory—one of the central and most vibrant areas of contemporary mathematics—from leading specialists on the subject. The topics range from the basic topology of algebraic varieties to the study of variations of mixed Hodge structure and the Hodge theory of maps. Of particular interest is the study of algebraic cycles, including the Hodge and Bloch–Beilinson Conjectures. Based on lectures delivered at the 2010 Summer School on Hodge Theory at the ICTP in Trieste, Italy, the book is intended for a broad group of students and researchers. The exposition is as accessible as possible and does not require a deep background. At the same time, the book presents some topics at the forefront of current research. The book is divided between introductory and advanced lectures. The introductory lectures address Kähler manifolds, variations of Hodge structure, mixed Hodge structures, the Hodge theory of maps, period domains and period mappings, algebraic cycles (up to and including the Bloch–Beilinson conjecture) and Chow groups, sheaf cohomology, and a new treatment of Grothendieck's algebraic de Rham theorem. The advanced lectures address a Hodge-theoretic perspective on Shimura varieties, the spread philosophy in the study of algebraic cycles, absolute Hodge classes (including a new, self-contained proof of Deligne's theorem on absolute Hodge cycles), and variation of mixed Hodge structures.Less
This book provides a comprehensive and up-to-date introduction to Hodge theory—one of the central and most vibrant areas of contemporary mathematics—from leading specialists on the subject. The topics range from the basic topology of algebraic varieties to the study of variations of mixed Hodge structure and the Hodge theory of maps. Of particular interest is the study of algebraic cycles, including the Hodge and Bloch–Beilinson Conjectures. Based on lectures delivered at the 2010 Summer School on Hodge Theory at the ICTP in Trieste, Italy, the book is intended for a broad group of students and researchers. The exposition is as accessible as possible and does not require a deep background. At the same time, the book presents some topics at the forefront of current research. The book is divided between introductory and advanced lectures. The introductory lectures address Kähler manifolds, variations of Hodge structure, mixed Hodge structures, the Hodge theory of maps, period domains and period mappings, algebraic cycles (up to and including the Bloch–Beilinson conjecture) and Chow groups, sheaf cohomology, and a new treatment of Grothendieck's algebraic de Rham theorem. The advanced lectures address a Hodge-theoretic perspective on Shimura varieties, the spread philosophy in the study of algebraic cycles, absolute Hodge classes (including a new, self-contained proof of Deligne's theorem on absolute Hodge cycles), and variation of mixed Hodge structures.
Jean-Michel Bismut
- Published in print:
- 2011
- Published Online:
- October 2017
- ISBN:
- 9780691151298
- eISBN:
- 9781400840571
- Item type:
- book
- Publisher:
- Princeton University Press
- DOI:
- 10.23943/princeton/9780691151298.001.0001
- Subject:
- Mathematics, Geometry / Topology
This book uses the hypoelliptic Laplacian to evaluate semisimple orbital integrals in a formalism that unifies index theory and the trace formula. The hypoelliptic Laplacian is a family of operators ...
More
This book uses the hypoelliptic Laplacian to evaluate semisimple orbital integrals in a formalism that unifies index theory and the trace formula. The hypoelliptic Laplacian is a family of operators that is supposed to interpolate between the ordinary Laplacian and the geodesic flow. It is essentially the weighted sum of a harmonic oscillator along the fiber of the tangent bundle, and of the generator of the geodesic flow. In this book, semisimple orbital integrals associated with the heat kernel of the Casimir operator are shown to be invariant under a suitable hypoelliptic deformation, which is constructed using the Dirac operator of Kostant. Their explicit evaluation is obtained by localization on geodesics in the symmetric space, in a formula closely related to the Atiyah-Bott fixed point formulas. Orbital integrals associated with the wave kernel are also computed. Estimates on the hypoelliptic heat kernel play a key role in the proofs, and are obtained by combining analytic, geometric, and probabilistic techniques. Analytic techniques emphasize the wavelike aspects of the hypoelliptic heat kernel, while geometrical considerations are needed to obtain proper control of the hypoelliptic heat kernel, especially in the localization process near the geodesics. Probabilistic techniques are especially relevant, because underlying the hypoelliptic deformation is a deformation of dynamical systems on the symmetric space, which interpolates between Brownian motion and the geodesic flow. The Malliavin calculus is used at critical stages of the proof.Less
This book uses the hypoelliptic Laplacian to evaluate semisimple orbital integrals in a formalism that unifies index theory and the trace formula. The hypoelliptic Laplacian is a family of operators that is supposed to interpolate between the ordinary Laplacian and the geodesic flow. It is essentially the weighted sum of a harmonic oscillator along the fiber of the tangent bundle, and of the generator of the geodesic flow. In this book, semisimple orbital integrals associated with the heat kernel of the Casimir operator are shown to be invariant under a suitable hypoelliptic deformation, which is constructed using the Dirac operator of Kostant. Their explicit evaluation is obtained by localization on geodesics in the symmetric space, in a formula closely related to the Atiyah-Bott fixed point formulas. Orbital integrals associated with the wave kernel are also computed. Estimates on the hypoelliptic heat kernel play a key role in the proofs, and are obtained by combining analytic, geometric, and probabilistic techniques. Analytic techniques emphasize the wavelike aspects of the hypoelliptic heat kernel, while geometrical considerations are needed to obtain proper control of the hypoelliptic heat kernel, especially in the localization process near the geodesics. Probabilistic techniques are especially relevant, because underlying the hypoelliptic deformation is a deformation of dynamical systems on the symmetric space, which interpolates between Brownian motion and the geodesic flow. The Malliavin calculus is used at critical stages of the proof.
Ehud Hrushovski and François Loeser
- Published in print:
- 2016
- Published Online:
- October 2017
- ISBN:
- 9780691161686
- eISBN:
- 9781400881222
- Item type:
- book
- Publisher:
- Princeton University Press
- DOI:
- 10.23943/princeton/9780691161686.001.0001
- Subject:
- Mathematics, Geometry / Topology
Over the field of real numbers, analytic geometry has long been in deep interaction with algebraic geometry, bringing the latter subject many of its topological insights. In recent decades, model ...
More
Over the field of real numbers, analytic geometry has long been in deep interaction with algebraic geometry, bringing the latter subject many of its topological insights. In recent decades, model theory has joined this work through the theory of o-minimality, providing finiteness and uniformity statements and new structural tools. For non-archimedean fields, such as the p-adics, the Berkovich analytification provides a connected topology with many thoroughgoing analogies to the real topology on the set of complex points, and it has become an important tool in algebraic dynamics and many other areas of geometry. This book lays down model-theoretic foundations for non-archimedean geometry. The methods combine o-minimality and stability theory. Definable types play a central role, serving first to define the notion of a point and then properties such as definable compactness. Beyond the foundations, the main theorem constructs a deformation retraction from the full non-archimedean space of an algebraic variety to a rational polytope. This generalizes previous results of V. Berkovich, who used resolution of singularities methods. No previous knowledge of non-archimedean geometry is assumed and model-theoretic prerequisites are reviewed in the first sections.Less
Over the field of real numbers, analytic geometry has long been in deep interaction with algebraic geometry, bringing the latter subject many of its topological insights. In recent decades, model theory has joined this work through the theory of o-minimality, providing finiteness and uniformity statements and new structural tools. For non-archimedean fields, such as the p-adics, the Berkovich analytification provides a connected topology with many thoroughgoing analogies to the real topology on the set of complex points, and it has become an important tool in algebraic dynamics and many other areas of geometry. This book lays down model-theoretic foundations for non-archimedean geometry. The methods combine o-minimality and stability theory. Definable types play a central role, serving first to define the notion of a point and then properties such as definable compactness. Beyond the foundations, the main theorem constructs a deformation retraction from the full non-archimedean space of an algebraic variety to a rational polytope. This generalizes previous results of V. Berkovich, who used resolution of singularities methods. No previous knowledge of non-archimedean geometry is assumed and model-theoretic prerequisites are reviewed in the first sections.
Christian Haesemeyer and Charles A. Weibel
- Published in print:
- 2019
- Published Online:
- January 2020
- ISBN:
- 9780691191041
- eISBN:
- 9780691189635
- Item type:
- book
- Publisher:
- Princeton University Press
- DOI:
- 10.23943/princeton/9780691191041.001.0001
- Subject:
- Mathematics, Geometry / Topology
This book presents the complete proof of the Bloch–Kato conjecture and several related conjectures of Beilinson and Lichtenbaum in algebraic geometry. Brought together here for the first time, these ...
More
This book presents the complete proof of the Bloch–Kato conjecture and several related conjectures of Beilinson and Lichtenbaum in algebraic geometry. Brought together here for the first time, these conjectures describe the structure of étale cohomology and its relation to motivic cohomology and Chow groups. Although the proof relies on the work of several people, it is credited primarily to Vladimir Voevodsky. The book draws on a multitude of published and unpublished sources to explain the large-scale structure of Voevodsky's proof and introduces the key figures behind its development. It proceeds to describe the highly innovative geometric constructions of Markus Rost, including the construction of norm varieties, which play a crucial role in the proof. It then addresses symmetric powers of motives and motivic cohomology operations. The book unites various components of the proof that until now were scattered across many sources of varying accessibility, often with differing hypotheses, definitions, and language.Less
This book presents the complete proof of the Bloch–Kato conjecture and several related conjectures of Beilinson and Lichtenbaum in algebraic geometry. Brought together here for the first time, these conjectures describe the structure of étale cohomology and its relation to motivic cohomology and Chow groups. Although the proof relies on the work of several people, it is credited primarily to Vladimir Voevodsky. The book draws on a multitude of published and unpublished sources to explain the large-scale structure of Voevodsky's proof and introduces the key figures behind its development. It proceeds to describe the highly innovative geometric constructions of Markus Rost, including the construction of norm varieties, which play a crucial role in the proof. It then addresses symmetric powers of motives and motivic cohomology operations. The book unites various components of the proof that until now were scattered across many sources of varying accessibility, often with differing hypotheses, definitions, and language.
Dan Margalit and Matt Clay (eds)
- Published in print:
- 2017
- Published Online:
- May 2018
- ISBN:
- 9780691158662
- eISBN:
- 9781400885398
- Item type:
- book
- Publisher:
- Princeton University Press
- DOI:
- 10.23943/princeton/9780691158662.001.0001
- Subject:
- Mathematics, Geometry / Topology
Geometric group theory is the study of the interplay between groups and the spaces they act on, and has its roots in the works of Henri Poincaré, Felix Klein, J.H.C. Whitehead, and Max Dehn. This ...
More
Geometric group theory is the study of the interplay between groups and the spaces they act on, and has its roots in the works of Henri Poincaré, Felix Klein, J.H.C. Whitehead, and Max Dehn. This book brings together leading experts who provide one-on-one instruction on key topics in this exciting and relatively new field of mathematics. It's like having office hours with your most trusted math professors. An essential primer for undergraduates making the leap to graduate work, the book begins with free groups—actions of free groups on trees, algorithmic questions about free groups, the ping-pong lemma, and automorphisms of free groups. It goes on to cover several large-scale geometric invariants of groups, including quasi-isometry groups, Dehn functions, Gromov hyperbolicity, and asymptotic dimension. It also delves into important examples of groups, such as Coxeter groups, Thompson's groups, right-angled Artin groups, lamplighter groups, mapping class groups, and braid groups. The tone is conversational throughout, and the instruction is driven by examples. It features numerous exercises and in-depth projects designed to engage readers and provide jumping-off points for research projects.Less
Geometric group theory is the study of the interplay between groups and the spaces they act on, and has its roots in the works of Henri Poincaré, Felix Klein, J.H.C. Whitehead, and Max Dehn. This book brings together leading experts who provide one-on-one instruction on key topics in this exciting and relatively new field of mathematics. It's like having office hours with your most trusted math professors. An essential primer for undergraduates making the leap to graduate work, the book begins with free groups—actions of free groups on trees, algorithmic questions about free groups, the ping-pong lemma, and automorphisms of free groups. It goes on to cover several large-scale geometric invariants of groups, including quasi-isometry groups, Dehn functions, Gromov hyperbolicity, and asymptotic dimension. It also delves into important examples of groups, such as Coxeter groups, Thompson's groups, right-angled Artin groups, lamplighter groups, mapping class groups, and braid groups. The tone is conversational throughout, and the instruction is driven by examples. It features numerous exercises and in-depth projects designed to engage readers and provide jumping-off points for research projects.
Benson Farb and Dan Margalit
- Published in print:
- 2011
- Published Online:
- October 2017
- ISBN:
- 9780691147949
- eISBN:
- 9781400839049
- Item type:
- book
- Publisher:
- Princeton University Press
- DOI:
- 10.23943/princeton/9780691147949.001.0001
- Subject:
- Mathematics, Geometry / Topology
The study of the mapping class group Mod(S) is a classical topic that is experiencing a renaissance. It lies at the juncture of geometry, topology, and group theory. This book explains as many ...
More
The study of the mapping class group Mod(S) is a classical topic that is experiencing a renaissance. It lies at the juncture of geometry, topology, and group theory. This book explains as many important theorems, examples, and techniques as possible, quickly and directly, while at the same time giving full details and keeping the text nearly self-contained. The book is suitable for graduate students. It begins by explaining the main group-theoretical properties of Mod(S), from finite generation by Dehn twists and low-dimensional homology to the Dehn–Nielsen–Baer–theorem. Along the way, central objects and tools are introduced, such as the Birman exact sequence, the complex of curves, the braid group, the symplectic representation, and the Torelli group. The book then introduces Teichmüller space and its geometry, and uses the action of Mod(S) on it to prove the Nielsen-Thurston classification of surface homeomorphisms. Topics include the topology of the moduli space of Riemann surfaces, the connection with surface bundles, pseudo-Anosov theory, and Thurston's approach to the classification.Less
The study of the mapping class group Mod(S) is a classical topic that is experiencing a renaissance. It lies at the juncture of geometry, topology, and group theory. This book explains as many important theorems, examples, and techniques as possible, quickly and directly, while at the same time giving full details and keeping the text nearly self-contained. The book is suitable for graduate students. It begins by explaining the main group-theoretical properties of Mod(S), from finite generation by Dehn twists and low-dimensional homology to the Dehn–Nielsen–Baer–theorem. Along the way, central objects and tools are introduced, such as the Birman exact sequence, the complex of curves, the braid group, the symplectic representation, and the Torelli group. The book then introduces Teichmüller space and its geometry, and uses the action of Mod(S) on it to prove the Nielsen-Thurston classification of surface homeomorphisms. Topics include the topology of the moduli space of Riemann surfaces, the connection with surface bundles, pseudo-Anosov theory, and Thurston's approach to the classification.
Stanley Chang
- Published in print:
- 2019
- Published Online:
- May 2021
- ISBN:
- 9780691160498
- eISBN:
- 9780691200354
- Item type:
- book
- Publisher:
- Princeton University Press
- DOI:
- 10.23943/princeton/9780691160498.001.0001
- Subject:
- Mathematics, Geometry / Topology
Surgery theory, a subfield of geometric topology, is the study of the classifications of manifolds. This book offers a modern look at this important mathematical discipline and some of its ...
More
Surgery theory, a subfield of geometric topology, is the study of the classifications of manifolds. This book offers a modern look at this important mathematical discipline and some of its applications. The book explains some of the triumphs of surgery theory during the past three decades, from both an algebraic and geometric point of view. It also provides an extensive treatment of basic ideas, main theorems, active applications, and recent literature. The authors methodically cover all aspects of surgery theory, connecting it to other relevant areas of mathematics, including geometry, homotopy theory, analysis, and algebra. Later chapters are self-contained, so readers can study them directly based on topic interest. Of significant use to high-dimensional topologists and researchers in noncommutative geometry and algebraic K-theory, the book serves as an important resource for the mathematics community.Less
Surgery theory, a subfield of geometric topology, is the study of the classifications of manifolds. This book offers a modern look at this important mathematical discipline and some of its applications. The book explains some of the triumphs of surgery theory during the past three decades, from both an algebraic and geometric point of view. It also provides an extensive treatment of basic ideas, main theorems, active applications, and recent literature. The authors methodically cover all aspects of surgery theory, connecting it to other relevant areas of mathematics, including geometry, homotopy theory, analysis, and algebra. Later chapters are self-contained, so readers can study them directly based on topic interest. Of significant use to high-dimensional topologists and researchers in noncommutative geometry and algebraic K-theory, the book serves as an important resource for the mathematics community.
Umberto Zannier
- Published in print:
- 2012
- Published Online:
- October 2017
- ISBN:
- 9780691153704
- eISBN:
- 9781400842711
- Item type:
- book
- Publisher:
- Princeton University Press
- DOI:
- 10.23943/princeton/9780691153704.001.0001
- Subject:
- Mathematics, Geometry / Topology
This book considers the so-called unlikely intersections, a topic that embraces well-known issues, such as Lang's and Manin–Mumford's, concerning torsion points in subvarieties of tori or abelian ...
More
This book considers the so-called unlikely intersections, a topic that embraces well-known issues, such as Lang's and Manin–Mumford's, concerning torsion points in subvarieties of tori or abelian varieties. More generally, the book considers algebraic subgroups that meet a given subvariety in a set of unlikely dimension. The book is an expansion of the Hermann Weyl Lectures delivered by the author at the Institute for Advanced Study in Princeton in May 2010.The book consists of four chapters and seven brief appendixes. The first chapter considers multiplicative algebraic groups, presenting proofs of several developments, ranging from the origins to recent results, and discussing many applications and relations with other contexts. The second chapter considers an analogue in arithmetic and several applications of this. The third chapter introduces a new method for approaching some of these questions, and presents a detailed application of this to a relative case of the Manin–Mumford issue. The fourth chapter focuses on the André–Oort conjecture (outlining work by Pila).Less
This book considers the so-called unlikely intersections, a topic that embraces well-known issues, such as Lang's and Manin–Mumford's, concerning torsion points in subvarieties of tori or abelian varieties. More generally, the book considers algebraic subgroups that meet a given subvariety in a set of unlikely dimension. The book is an expansion of the Hermann Weyl Lectures delivered by the author at the Institute for Advanced Study in Princeton in May 2010.The book consists of four chapters and seven brief appendixes. The first chapter considers multiplicative algebraic groups, presenting proofs of several developments, ranging from the origins to recent results, and discussing many applications and relations with other contexts. The second chapter considers an analogue in arithmetic and several applications of this. The third chapter introduces a new method for approaching some of these questions, and presents a detailed application of this to a relative case of the Manin–Mumford issue. The fourth chapter focuses on the André–Oort conjecture (outlining work by Pila).
Friedhelm Waldhausen, Bjørn Jahren, and John Rognes
- Published in print:
- 2013
- Published Online:
- October 2017
- ISBN:
- 9780691157757
- eISBN:
- 9781400846528
- Item type:
- book
- Publisher:
- Princeton University Press
- DOI:
- 10.23943/princeton/9780691157757.001.0001
- Subject:
- Mathematics, Geometry / Topology
Since its introduction by the author in the 1970s, the algebraic K-theory of spaces has been recognized as the main tool for studying parametrized phenomena in the theory of manifolds. However, a ...
More
Since its introduction by the author in the 1970s, the algebraic K-theory of spaces has been recognized as the main tool for studying parametrized phenomena in the theory of manifolds. However, a full proof of the equivalence relating the two areas has not appeared until now. This book presents such a proof, essentially completing the author's program from more than thirty years ago. The main result is a stable parametrized h-cobordism theorem, derived from a homotopy equivalence between a space of PL h-cobordisms on a space X and the classifying space of a category of simple maps of spaces having X as deformation retract. The smooth and topological results then follow by smoothing and triangulation theory. The proof has two main parts. The essence of the first part is a “desingularization,” improving arbitrary finite simplicial sets to polyhedra. The second part compares polyhedra with PL manifolds by a thickening procedure. Many of the techniques and results developed should be useful in other connections.Less
Since its introduction by the author in the 1970s, the algebraic K-theory of spaces has been recognized as the main tool for studying parametrized phenomena in the theory of manifolds. However, a full proof of the equivalence relating the two areas has not appeared until now. This book presents such a proof, essentially completing the author's program from more than thirty years ago. The main result is a stable parametrized h-cobordism theorem, derived from a homotopy equivalence between a space of PL h-cobordisms on a space X and the classifying space of a category of simple maps of spaces having X as deformation retract. The smooth and topological results then follow by smoothing and triangulation theory. The proof has two main parts. The essence of the first part is a “desingularization,” improving arbitrary finite simplicial sets to polyhedra. The second part compares polyhedra with PL manifolds by a thickening procedure. Many of the techniques and results developed should be useful in other connections.