Loring W. Tu
- Published in print:
- 2020
- Published Online:
- January 2021
- ISBN:
- 9780691191751
- eISBN:
- 9780691197487
- Item type:
- book
- Publisher:
- Princeton University Press
- DOI:
- 10.23943/princeton/9780691191751.001.0001
- Subject:
- Mathematics, Educational Mathematics
Equivariant cohomology is concerned with the algebraic topology of spaces with a group action, or in other words, with symmetries of spaces. First defined in the 1950s, it has been introduced into ...
More
Equivariant cohomology is concerned with the algebraic topology of spaces with a group action, or in other words, with symmetries of spaces. First defined in the 1950s, it has been introduced into K-theory and algebraic geometry, but it is in algebraic topology that the concepts are the most transparent and the proofs are the simplest. One of the most useful applications of equivariant cohomology is the equivariant localization theorem of Atiyah–Bott and Berline–Vergne, which converts the integral of an equivariant differential form into a finite sum over the fixed point set of the group action, providing a powerful tool for computing integrals over a manifold. Because integrals and symmetries are ubiquitous, equivariant cohomology has found applications in diverse areas of mathematics and physics. Assuming readers have taken one semester of manifold theory and a year of algebraic topology, the book begins with the topological construction of equivariant cohomology, then develops the theory for smooth manifolds with the aid of differential forms. To keep the exposition simple, the equivariant localization theorem is proven only for a circle action. An appendix gives a proof of the equivariant de Rham theorem, demonstrating that equivariant cohomology can be computed using equivariant differential forms. Examples and calculations illustrate new concepts. Exercises include hints or solutions, making this book suitable for self-study.Less
Equivariant cohomology is concerned with the algebraic topology of spaces with a group action, or in other words, with symmetries of spaces. First defined in the 1950s, it has been introduced into K-theory and algebraic geometry, but it is in algebraic topology that the concepts are the most transparent and the proofs are the simplest. One of the most useful applications of equivariant cohomology is the equivariant localization theorem of Atiyah–Bott and Berline–Vergne, which converts the integral of an equivariant differential form into a finite sum over the fixed point set of the group action, providing a powerful tool for computing integrals over a manifold. Because integrals and symmetries are ubiquitous, equivariant cohomology has found applications in diverse areas of mathematics and physics. Assuming readers have taken one semester of manifold theory and a year of algebraic topology, the book begins with the topological construction of equivariant cohomology, then develops the theory for smooth manifolds with the aid of differential forms. To keep the exposition simple, the equivariant localization theorem is proven only for a circle action. An appendix gives a proof of the equivariant de Rham theorem, demonstrating that equivariant cohomology can be computed using equivariant differential forms. Examples and calculations illustrate new concepts. Exercises include hints or solutions, making this book suitable for self-study.
Richard Evan Schwartz
- Published in print:
- 2019
- Published Online:
- September 2019
- ISBN:
- 9780691181387
- eISBN:
- 9780691188997
- Item type:
- book
- Publisher:
- Princeton University Press
- DOI:
- 10.23943/princeton/9780691181387.001.0001
- Subject:
- Mathematics, Educational Mathematics
Outer billiards provides a toy model for planetary motion and exhibits intricate and mysterious behavior even for seemingly simple examples. It is a dynamical system in which a particle in the plane ...
More
Outer billiards provides a toy model for planetary motion and exhibits intricate and mysterious behavior even for seemingly simple examples. It is a dynamical system in which a particle in the plane moves around the outside of a convex shape according to a scheme that is reminiscent of ordinary billiards. This book provides a combinatorial model for orbits of outer billiards on kites. The book relates these orbits to such topics as polytope exchange transformations, renormalization, continued fractions, corner percolation, and the Truchet tile system. The combinatorial model, called “the plaid model,” has a self-similar structure that blends geometry and elementary number theory. The results were discovered through computer experimentation and it seems that the conclusions would be extremely difficult to reach through traditional mathematics. The book includes an extensive computer program that allows readers to explore the materials interactively and each theorem is accompanied by a computer demonstration.Less
Outer billiards provides a toy model for planetary motion and exhibits intricate and mysterious behavior even for seemingly simple examples. It is a dynamical system in which a particle in the plane moves around the outside of a convex shape according to a scheme that is reminiscent of ordinary billiards. This book provides a combinatorial model for orbits of outer billiards on kites. The book relates these orbits to such topics as polytope exchange transformations, renormalization, continued fractions, corner percolation, and the Truchet tile system. The combinatorial model, called “the plaid model,” has a self-similar structure that blends geometry and elementary number theory. The results were discovered through computer experimentation and it seems that the conclusions would be extremely difficult to reach through traditional mathematics. The book includes an extensive computer program that allows readers to explore the materials interactively and each theorem is accompanied by a computer demonstration.