Linear Stochastic Difference Equations
Linear Stochastic Difference Equations
This chapter describes the vector first-order linear stochastic difference equation. It is first used to represent information flowing to economic agents, then again to represent competitive equilibria. The vector first-order linear stochastic difference equation is associated with a tidy theory of prediction and a host of procedures for econometric application. Ease of analysis has prompted the adoption of economic specifications that cause competitive equilibria to have representations as vector first-order linear stochastic difference equations. Because it expresses next period's vector of state variables as a linear function of this period's state vector and a vector of random disturbances, a vector first-order vector stochastic difference equation is recursive. Disturbances that form a “martingale difference sequence” are basic building blocks used to construct time series. Martingale difference sequences are easy to forecast, a fact that delivers convenient recursive formulas for optimal predictions of time series.
Keywords: vector first-order, linear stochastic difference equation, competitive equilibria, state variables, random disturbance, martingale difference sequence, time series
Princeton Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.
Please, subscribe or login to access full text content.
If you think you should have access to this title, please contact your librarian.
To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us.