Adaptive Diversification Due to Resource Competition in Sexual Models
Adaptive Diversification Due to Resource Competition in Sexual Models
This chapter examines evolutionary branching in sexual populations. As sexual populations converge to what would be a branching point in clonal models, splitting obviously becomes a problem, because mating between different marginal phenotypes generally creates intermediate phenotypes. Through segregation and recombination, sexual reproduction can prevent the establishment of diverging phenotypic clusters in randomly mating populations. To allow for a phenotypic split, mating needs to be assortative with respect to the ecological trait that is under disruptive selection. Thus, the question of evolutionary branching in sexual populations, that is, of adaptive speciation, is intimately tied to questions about the evolution of assortative mating. If evolutionary branching occurs in sexual populations due to the presence of assortative mating mechanisms, the diverging phenotypic clusters will show prezygotic reproductive isolation at least to some extent, and hence they can be viewed as representing incipient species.
Keywords: evolutionary branching, sexual populations, clonal models, sexual reproduction, mating populations, disruptive selection, adaptive speciation, assortative mating, diverging phenotypic clusters, prezygotic reproductive isolation
Princeton Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.
Please, subscribe or login to access full text content.
If you think you should have access to this title, please contact your librarian.
To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us.