Numerical Method
Numerical Method
This chapter describes a numerical method for solving equations of thermal convection on a computer. It begins by introducing the vorticity-streamfunction formulation as a means of conserving mass. The approach involves updating for the vorticity first and then solving for the fluid velocity each time step. The chapter continues with a discussion of two very different spatial discretizations, whereby the vertical derivatives are approximated with a finite-difference method and the horizontal derivatives with a spectral method. The nonlinear terms are computed in spectral space. The chapter also considers the Adams-Bashforth time integration scheme and explains how the Poisson equation can be solved at each time step for the updated streamfunction given the updated vorticity.
Keywords: numerical method, thermal convection, vorticity-streamfunction formulation, vorticity, fluid velocity, spatial discretization, finite-difference method, spectral method, Adams-Bashforth time integration scheme, Poisson equation
Princeton Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.
Please, subscribe or login to access full text content.
If you think you should have access to this title, please contact your librarian.
To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us.