Jump to ContentJump to Main Navigation
Weyl Group Multiple Dirichlet SeriesType A Combinatorial Theory (AM-175)$
Users without a subscription are not able to see the full content.

Ben Brubaker, Daniel Bump, and Solomon Friedberg

Print publication date: 2011

Print ISBN-13: 9780691150659

Published to Princeton Scholarship Online: October 2017

DOI: 10.23943/princeton/9780691150659.001.0001

Show Summary Details
Page of

PRINTED FROM PRINCETON SCHOLARSHIP ONLINE (www.princeton.universitypressscholarship.com). (c) Copyright Princeton University Press, 2022. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in PRSO for personal use.date: 21 May 2022

Tokuyama’s Theorem

Tokuyama’s Theorem

(p.31) Chapter Five Tokuyama’s Theorem
Weyl Group Multiple Dirichlet Series

Ben Brubaker

Daniel Bump

Solomon Friedberg

Princeton University Press

This chapter introduces the Tokuyama's Theorem, first by writing the Weyl character formula and restating Schur polynomials, the values of the Whittaker function multiplied by the normalization constant. The λ‎-parts of Whittaker coefficients of Eisenstein series can be profitably regarded as a deformation of the numerator in the Weyl character formula. This leads to deformations of the Weyl character formula. Tokuyama gave such a deformation. It is an expression of ssubscript Greek small letter lamda(z) as a ratio of a numerator to a denominator. The denominator is a deformation of the Weyl denominator, and the numerator is a sum over Gelfand-Tsetlin patterns with top row λ‎ + ρ‎.

Keywords:   Tokuyama's Theorem, Weyl character formula, Schur polynomial, Whittaker function, Whittaker coefficient, Eisenstein series, Weyl denominator, Gelfand-Tsetlin pattern

Princeton Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us.