Introduction
Introduction
This introductory chapter begins with a brief definition of conformal geometry. Conformal geometry is the study of spaces in which one knows how to measure infinitesimal angles but not lengths. A conformal structure on a manifold is an equivalence class of Riemannian metrics, in which two metrics are identified if one is a positive smooth multiple of the other. In [FG], the authors outlined a construction of a nondegenerate Lorentz metric in n+2 dimensions associated to an n-dimensional conformal manifold, which they called the ambient metric. This association enables one to construct conformal invariants in n dimensions from pseudo-Riemannian invariants in n+2 dimensions, and in particular shows that conformal invariants are plentiful. The formal theory outlined in [FG] did not provide details. This book provides these details. An overview of the subsequent chapters is also presented.
Keywords: conformal geometry, ambient metric, Riemannian metrics, manifold, Lorentz metric, conformal invariants
Princeton Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.
Please, subscribe or login to access full text content.
If you think you should have access to this title, please contact your librarian.
To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us.