Large-Scale Discrete-Time Interconnected Dynamical Systems
Large-Scale Discrete-Time Interconnected Dynamical Systems
This chapter develops vector dissipativity notions for large-scale nonlinear discrete-time dynamical systems. In particular, it introduces a generalized definition of dissipativity for large-scale nonlinear discrete-time dynamical systems in terms of a vector dissipation inequality involving a vector supply rate, a vector storage function, and a nonnegative, semistable dissipation matrix. On the subsystem level, the proposed approach provides a discrete energy flow balance in terms of the stored subsystem energy, the supplied subsystem energy, the subsystem energy gained from all other subsystems independent of the subsystem coupling strengths, and the subsystem energy dissipated. The chapter also develops extended Kalman–Yakubovich–Popov conditions, in terms of the local subsystem dynamics and the interconnection constraints, for characterizing vector dissipativeness via vector storage functions for large-scale discrete-time dynamical systems.
Keywords: vector dissipativity, discrete-time dynamical system, vector dissipation inequality, vector supply rate, vector storage function, semistable dissipation matrix, energy flow, subsystem energy, Kalman–Yakubovich–Popov conditions
Princeton Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.
Please, subscribe or login to access full text content.
If you think you should have access to this title, please contact your librarian.
To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us.