Large-Scale Impulsive Dynamical Systems
Large-Scale Impulsive Dynamical Systems
This chapter develops vector dissipativity notions for large-scale nonlinear impulsive dynamical systems. In particular, it introduces a generalized definition of dissipativity for large-scale nonlinear impulsive dynamical systems in terms of a hybrid vector dissipation inequality involving a vector hybrid supply rate, a vector storage function, and an essentially nonnegative, semistable dissipation matrix. The chapter also defines generalized notions of a vector available storage and a vector required supply and shows that they are element-by-element ordered, nonnegative, and finite. Extended Kalman-Yakubovich-Popov conditions, in terms of the local impulsive subsystem dynamics and the interconnection constraints, are developed for characterizing vector dissipativeness via vector storage functions for large-scale impulsive dynamical systems. Finally, using the concepts of vector dissipativity and vector storage functions as candidate vector Lyapunov functions, the chapter presents feedback interconnection stability results of large-scale impulsive nonlinear dynamical systems.
Keywords: vector dissipativity, impulsive dynamical system, hybrid vector dissipation inequality, vector hybrid supply rate, vector storage function, semistable dissipation matrix, vector available storage, vector required supply, Kalman–Yakubovich–Popov conditions, vector Lyapunov function
Princeton Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.
Please, subscribe or login to access full text content.
If you think you should have access to this title, please contact your librarian.
To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us.