Jump to ContentJump to Main Navigation
Fréchet Differentiability of Lipschitz Functions and Porous Sets in Banach Spaces (AM-179)$
Users without a subscription are not able to see the full content.

Joram Lindenstrauss, David Preiss, and Jaroslav Tier

Print publication date: 2012

Print ISBN-13: 9780691153551

Published to Princeton Scholarship Online: October 2017

DOI: 10.23943/princeton/9780691153551.001.0001

Show Summary Details
Page of

PRINTED FROM PRINCETON SCHOLARSHIP ONLINE (www.princeton.universitypressscholarship.com). (c) Copyright Princeton University Press, 2022. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in PRSO for personal use.date: 02 July 2022

Ε‎-Fr ´Echet Differentiability

Ε‎-Fr ´Echet Differentiability

(p.46) Chapter Four Ε‎-Fr ´Echet Differentiability
Fréchet Differentiability of Lipschitz Functions and Porous Sets in Banach Spaces (AM-179)

Joram Lindenstrauss

David Preiss

Tiˇser Jaroslav

Princeton University Press

This chapter treats results on ε‎-Fréchet differentiability of Lipschitz functions in asymptotically smooth spaces. These results are highly exceptional in the sense that they prove almost Frechet differentiability in some situations when we know that the closed convex hull of all (even almost) Fréchet derivatives may be strictly smaller than the closed convex hull of the Gâteaux derivatives. The chapter first presents a simple proof of an almost differentiability result for Lipschitz functions in asymptotically uniformly smooth spaces before discussing the notion of asymptotic uniform smoothness. It then proves that in an asymptotically smooth Banach space X, any finite set of real-valued Lipschitz functions on X has, for every ε‎ > 0, a common point of ε‎-Fréchet differentiability.

Keywords:   asymptotically smooth space, ε‎-Fréchet differentiability, Lipschitz function, Frechet differentiability, Fréchet derivative, Gâteaux derivative, asymptotic uniform smoothness, Banach space

Princeton Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us.