Variational Principles
Variational Principles
This chapter describes smooth variational principles (of Ekeland type) as infinite two-player games. These variational principles are based on a simple but careful recursive choice of points where certain functions that change during the process have values close to their infima. Like many other recursive constructions, the choice has a natural description using the language of infinite two-player games with perfect information. The chapter first considers the perturbation game used in Theorem 7.2.1 to formulate an abstract version of the variational principle before showing how to specialize it to more standard formulations. It then examines the bimetric variant of the smooth variational principle, along with the perturbation functions that are relatively simple. It concludes with an assessment of cases when completeness and lower semicontinuity hold only in a bimetric sense.
Keywords: variational principle, two-player game, perturbation game, perturbation function, completeness, lower semicontinuity
Princeton Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.
Please, subscribe or login to access full text content.
If you think you should have access to this title, please contact your librarian.
To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us.