Jump to ContentJump to Main Navigation
Fréchet Differentiability of Lipschitz Functions and Porous Sets in Banach Spaces (AM-179)$
Users without a subscription are not able to see the full content.

Joram Lindenstrauss, David Preiss, and Jaroslav Tier

Print publication date: 2012

Print ISBN-13: 9780691153551

Published to Princeton Scholarship Online: October 2017

DOI: 10.23943/princeton/9780691153551.001.0001

Show Summary Details
Page of

PRINTED FROM PRINCETON SCHOLARSHIP ONLINE (www.princeton.universitypressscholarship.com). (c) Copyright Princeton University Press, 2022. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in PRSO for personal use.date: 30 June 2022

Preliminaries to Main Results

Preliminaries to Main Results

(p.156) Chapter Nine Preliminaries to Main Results
Fréchet Differentiability of Lipschitz Functions and Porous Sets in Banach Spaces (AM-179)

Joram Lindenstrauss

David Preiss

Tiˇser Jaroslav

Princeton University Press

This chapter presents a number of results and notions that will be used in subsequent chapters. In particular, it considers the concept of regular differentiability and the lemma on deformation of n-dimensional surfaces. The idea is to deform a flat surface passing through a point x (along which we imagine that a certain function f is almost affine) to a surface passing through a point witnessing that f is not Fréchet differentiable at x. This is done in such a way that certain “energy” associated to surfaces increases less than the “energy” of the functionf along the surface. The chapter also discusses linear operators and tensor products, various notions and notation related to Fréchet differentiability, and deformation of surfaces controlled by ω‎ⁿ. Finally, it proves some integral estimates of derivatives of Lipschitz maps between Euclidean spaces (not necessarily of the same dimension).

Keywords:   regular differentiability, derivative, deformation, flat surface, linear operators, tensor products, Fréchet differentiability, Lipschitz map, Euclidean space

Princeton Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us.