Hybrid Dynamical Systems: Modeling, Stability, and Robustness
Rafal Goebel, Ricardo G. Sanfelice, and Andrew R. Teel
Abstract
Hybrid dynamical systems exhibit continuous and instantaneous changes, having features of continuous-time and discrete-time dynamical systems. Filled with a wealth of examples to illustrate concepts, this book presents a complete theory of robust asymptotic stability for hybrid dynamical systems that is applicable to the design of hybrid control algorithms—algorithms that feature logic, timers, or combinations of digital and analog components. With the tools of modern mathematical analysis, this book unifies and generalizes earlier developments in continuous-time and discrete-time nonlinear sy ... More
Hybrid dynamical systems exhibit continuous and instantaneous changes, having features of continuous-time and discrete-time dynamical systems. Filled with a wealth of examples to illustrate concepts, this book presents a complete theory of robust asymptotic stability for hybrid dynamical systems that is applicable to the design of hybrid control algorithms—algorithms that feature logic, timers, or combinations of digital and analog components. With the tools of modern mathematical analysis, this book unifies and generalizes earlier developments in continuous-time and discrete-time nonlinear systems. It presents hybrid system versions of the necessary and sufficient Lyapunov conditions for asymptotic stability, invariance principles, and approximation techniques, and examines the robustness of asymptotic stability, motivated by the goal of designing robust hybrid control algorithms. This self-contained and classroom-tested book requires standard background in mathematical analysis and differential equations or nonlinear systems. It will interest graduate students in engineering as well as students and researchers in control, computer science, and mathematics.
Keywords:
hybrid dynamical systems,
asymptotic stability,
hybrid control algorithms,
continuous time,
discrete time,
nonlinear systems,
differential equations
Bibliographic Information
Print publication date: 2012 |
Print ISBN-13: 9780691153896 |
Published to Princeton Scholarship Online: October 2017 |
DOI:10.23943/princeton/9780691153896.001.0001 |
Authors
Affiliations are at time of print publication.
Rafal Goebel, author
Loyola University Chicago
Ricardo G. Sanfelice, author
University of California, Santa Cruz
Andrew R. Teel, author
University of California, Santa Barbara
More
Less