Hierarchical Bayesian Models
Hierarchical Bayesian Models
This chapter seeks to explain hierarchical models and how they differ from simple Bayesian models and to illustrate building hierarchical models using mathematically correct expressions. It begins with the definition of hierarchical models. Next, the chapter introduces four general classes of hierarchical models that have broad application in ecology. These classes can be used individually or in combination to attack virtually any research problem. Examples are used to show how to draw Bayesian networks that portray stochastic relationships between observed and unobserved quantities. The chapter furthermore shows how to use network drawings as a guide for writing posterior and joint distributions.
Keywords: hierarchical models, hierarchical Bayesian models, Bayesian networks, stochastic relationships, network drawings, posterior distribution, joint distribution
Princeton Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.
Please, subscribe or login to access full text content.
If you think you should have access to this title, please contact your librarian.
To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us.