Action-Minimizing Invariant Measures for Tonelli Lagrangians
Action-Minimizing Invariant Measures for Tonelli Lagrangians
This chapter discusses the notion of action-minimizing measures, recalling the needed measure–theoretical material. In particular, this allows the definition of a first family of invariant sets, the so-called Mather sets. It discusses their main dynamical and symplectic properties, and introduces the minimal average actions, sometimes called Mather's α- and β-functions. A thorough discussion of their properties (differentiability, strict convexity or lack thereof) is provided and related to the dynamical and structural properties of the Mather sets. The chapter also describes these concepts in a concrete physical example: the simple pendulum.
Keywords: action-minimizing measure, Maher sets, invariant sets, differentiability, strict convexity, pendulum
Princeton Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.
Please, subscribe or login to access full text content.
If you think you should have access to this title, please contact your librarian.
To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us.