Jump to ContentJump to Main Navigation
Descent in Buildings (AM-190)$
Users without a subscription are not able to see the full content.

Bernhard Mühlherr, Holger P. Petersson, and Richard M. Weiss

Print publication date: 2015

Print ISBN-13: 9780691166902

Published to Princeton Scholarship Online: October 2017

DOI: 10.23943/princeton/9780691166902.001.0001

Show Summary Details
Page of

PRINTED FROM PRINCETON SCHOLARSHIP ONLINE (www.princeton.universitypressscholarship.com). (c) Copyright Princeton University Press, 2022. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in PRSO for personal use.date: 20 May 2022

Quadratic Forms of Type E6, E7 and E8

Quadratic Forms of Type E6, E7 and E8

(p.69) Chapter Eight Quadratic Forms of Type E6, E7 and E8
Descent in Buildings (AM-190)

Bernhard M¨uhlherr

Holger P. Petersson

Richard M. Weiss

Princeton University Press

This chapter presents various results about quadratic forms of type E⁶, E₇, and E₈. It first recalls the definition of a quadratic space Λ‎ = (K, L, q) of type Eℓ for ℓ = 6, 7 or 8. If D₁, D₂, and D₃ are division algebras, a quadratic form of type E⁶ can be characterized as the anisotropic sum of two quadratic forms, one similar to the norm of a quaternion division algebra D over K and the other similar to the norm of a separable quadratic extension E/K such that E is a subalgebra of D over K. Also, there exist fields of arbitrary characteristic over which there exist quadratic forms of type E⁶, E₇, and E₈. The chapter also considers a number of propositions regarding quadratic spaces, including anisotropic quadratic spaces, and proves some more special properties of quadratic forms of type E₅, E⁶, E₇, and E₈.

Keywords:   quadratic form, quadratic space, quaternion division algebra, separable quadratic extension, anisotropic quadratic space

Princeton Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us.