Universal smooth k-tame central extension
Universal smooth k-tame central extension
This chapter describes the construction of canonical central extensions that are analogues for perfect smooth connected affine k-groups of the simply connected central cover of a connected semisimple k-group. A commutative affine k-group scheme of finite type is k-tame if it does not contain a nontrivial unipotent k-subgroup scheme. The chapter establishes good properties of the universal smooth k-tame central extension, noting that the property “locally of minimal type” is inherited by pseudo-reductive central quotients of pseudo-reductive groups. Although inseparable Weil restriction does not generally preserve perfectness, the chapter shows that the formation of the universal smooth k-tame central extension interacts with derived groups of Weil restrictions.
Keywords: k-tame central extension, semisimple k-group, minimal type, central quotient, pseudo-reductive group, Weil restriction, canonical central extensions
Princeton Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.
Please, subscribe or login to access full text content.
If you think you should have access to this title, please contact your librarian.
To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us.