Reduction to Restriction Estimates near the Principal Root Jet
Reduction to Restriction Estimates near the Principal Root Jet
This chapter shows that one may reduce the desired Fourier restriction estimate to a piece Ssubscript Greek small letter psi of the surface S lying above a small, “horn-shaped” neighborhood Dsubscript Greek small letter psi of the principal root jet ψ, on which ∣x₂ − ψ(x₁)∣ ≤ εxᵐ₁. Here, ε > 0 can be chosen as small as one wishes. The proof then provides the opportunity to introduce some of the basic tools which will be applied frequently, such as dyadic domain decompositions, rescaling arguments based on the dilations associated to a given edge of the Newton polyhedron, in combination with Greenleaf's restriction and Littlewood–Paley theory, hence summing the estimates that have been obtained for the dyadic pieces.
Keywords: principal root jet, dyadic domain decompositions, Newton polyhedron, Greenleaf's restriction, Littlewood–Paley theory, Fourier restriction estimate
Princeton Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.
Please, subscribe or login to access full text content.
If you think you should have access to this title, please contact your librarian.
To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us.