Molecular Machines: A Materials Science Approach
Giovanni Zocchi
Abstract
This book presents a dynamic new approach to the physics of enzymes and DNA from the perspective of materials science. Unified around the concept of molecular deformability—how proteins and DNA stretch, fold, and change shape—the book describes the complex molecules of life from the innovative perspective of materials properties and dynamics, in contrast to structural or purely chemical approaches. It covers a wealth of topics, including nonlinear deformability of enzymes and DNA; the chemo-dynamic cycle of enzymes; supra-molecular constructions with internal stress; nano-rheology and viscoela ... More
This book presents a dynamic new approach to the physics of enzymes and DNA from the perspective of materials science. Unified around the concept of molecular deformability—how proteins and DNA stretch, fold, and change shape—the book describes the complex molecules of life from the innovative perspective of materials properties and dynamics, in contrast to structural or purely chemical approaches. It covers a wealth of topics, including nonlinear deformability of enzymes and DNA; the chemo-dynamic cycle of enzymes; supra-molecular constructions with internal stress; nano-rheology and viscoelasticity; and chemical kinetics, Brownian motion, and barrier crossing. Essential reading for researchers in materials science, engineering, and nanotechnology, the book also describes the landmark experiments that have established the materials properties and energy landscape of large biological molecules. The book gives graduate students a working knowledge of model building in statistical mechanics, making it an essential resource for tomorrow's experimentalists in this cutting-edge field. In addition, mathematical methods are introduced in the bio-molecular context. The result is a generalized approach to mathematical problem solving that enables students to apply their findings more broadly.
Keywords:
molecular deformability,
nonlinear deformability,
DNA,
enzymes,
nano-rheology,
viscoelasticity,
chemical kinetics,
Brownian motion,
statistical mechanics,
mathematical methods
Bibliographic Information
Print publication date: 2018 |
Print ISBN-13: 9780691173863 |
Published to Princeton Scholarship Online: January 2019 |
DOI:10.23943/princeton/9780691173863.001.0001 |