- Title Pages
- Preface
- Introduction
-
1 The Euler-Reynolds System -
Part II General Considerations of the Scheme -
2 Structure of the Book -
3 Basic Technical Outline -
4 Notation -
5 A Main Lemma for Continuous Solutions -
6 The Divergence Equation -
7 Constructing the Correction -
8 Constructing Continuous Solutions -
9 Frequency and Energy Levels -
10 The Main Iteration Lemma -
11 Main Lemma Implies the Main Theorem -
12 Gluing Solutions -
13 On Onsager's Conjecture -
14 Preparatory Lemmas -
15 The Coarse Scale Velocity -
16 The Coarse Scale Flow and Commutator Estimates -
17 Transport Estimates -
18 Mollification along the Coarse Scale Flow -
19 Accounting for the Parameters and the Problem with the High-High Term -
Part VI Construction of Regular Weak Solutions: Estimating the Correction -
20 Bounds for Coefficients from the Stress Equation -
21 Bounds for the Vector Amplitudes -
22 Bounds for the Corrections -
23 Energy Approximation -
24 Checking Frequency Energy Levels for the Velocity and Pressure -
Part VII Construction of Regular Weak Solutions: Estimating the New Stress -
25 Stress Terms Not Involving Solving the Divergence Equation -
26 Terms Involving the Divergence Equation -
27 Transport-Elliptic Estimates - Appendices
- References
- Index
The Coarse Scale Flow and Commutator Estimates
The Coarse Scale Flow and Commutator Estimates
- Chapter:
- 16 The Coarse Scale Flow and Commutator Estimates
- Source:
- Hölder Continuous Euler Flows in Three Dimensions with Compact Support in Time
- Author(s):
Philip Isett
- Publisher:
- Princeton University Press
This chapter derives estimates for the coarse scale flow and commutator. Instead of mollifying the velocity field in the time variable, it derives a Transport equation for vsubscript Element and some estimates that will be necessary for the proof. Here the quadratic term arises from the failure of the nonlinearity to commute with the averaging. Commutator estimates are then derived. To observe cancellation in the quadratic term, the control over the higher-frequency part of v is used, and cancellation is obtained from the lower-frequency parts. It becomes clear that the commutator terms can be estimated using the control of only the derivatives of v. The chapter concludes by presenting the theorem for coarse scale flow estimates.
Keywords: coarse scale flow, commutator estimate, Transport equation, commutator, commutator term
Princeton Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.
Please, subscribe or login to access full text content.
If you think you should have access to this title, please contact your librarian.
To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us.
- Title Pages
- Preface
- Introduction
-
1 The Euler-Reynolds System -
Part II General Considerations of the Scheme -
2 Structure of the Book -
3 Basic Technical Outline -
4 Notation -
5 A Main Lemma for Continuous Solutions -
6 The Divergence Equation -
7 Constructing the Correction -
8 Constructing Continuous Solutions -
9 Frequency and Energy Levels -
10 The Main Iteration Lemma -
11 Main Lemma Implies the Main Theorem -
12 Gluing Solutions -
13 On Onsager's Conjecture -
14 Preparatory Lemmas -
15 The Coarse Scale Velocity -
16 The Coarse Scale Flow and Commutator Estimates -
17 Transport Estimates -
18 Mollification along the Coarse Scale Flow -
19 Accounting for the Parameters and the Problem with the High-High Term -
Part VI Construction of Regular Weak Solutions: Estimating the Correction -
20 Bounds for Coefficients from the Stress Equation -
21 Bounds for the Vector Amplitudes -
22 Bounds for the Corrections -
23 Energy Approximation -
24 Checking Frequency Energy Levels for the Velocity and Pressure -
Part VII Construction of Regular Weak Solutions: Estimating the New Stress -
25 Stress Terms Not Involving Solving the Divergence Equation -
26 Terms Involving the Divergence Equation -
27 Transport-Elliptic Estimates - Appendices
- References
- Index