One-Player Dynamic Games
One-Player Dynamic Games
This chapter focuses on one-player discrete time dynamic games, that is, the optimal control of a discrete time dynamical system. It first considers solution methods for one-player dynamic games, which are simple optimizations, before discussing discrete time cost-to-go. It shows that, regardless of the information structure (open loop, state feedback or other), it is not possible to obtain a cost lower than the cost-to-go. A computationally efficient recursive technique that can be used to compute the cost-to-go is dynamic programming. After providing an overview of discrete time dynamic programming, the chapter explores the complexity of computing the cost-to-go at all stages, the use of MATLAB to solve finite one-player games, and linear quadratic dynamic games. It concludes with a practice exercise and the corresponding solution, along with an additional exercise.
Keywords: discrete time dynamic, discrete time cost-to-go, discrete time dynamic programming, MATLAB, finite one-player, linear quadratic dynamic
Princeton Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.
Please, subscribe or login to access full text content.
If you think you should have access to this title, please contact your librarian.
To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us.