The Modern Approach: Oblique Triangles
The Modern Approach: Oblique Triangles
This chapter discusses the modern approach to solving oblique triangles. Two important theorems about planar oblique triangles are the spherical and planar Law of Sines and the Law of Cosines, which is an extension of the Pythagorean Theorem applied to oblique triangles. Book I of Euclid's Elements deals primarily with the Pythagorean Theorem (Proposition 47) and its converse (Proposition 48), while Book II contains theorems that may be translated directly into various algebraic statements. The chapter considers two of the last three theorems of Book II: Proposition 12, which deals with obtuse-angled triangles, and Proposition 13, which is concerned with acute-angled triangles. It also extends the Law of Cosines to the sphere and uses it to solve astronomical and geographical problems, such as finding the distance from Vancouver to Edmonton. Finally, it describes Delambre's analogies and Napier's analogies.
Keywords: oblique triangle, Law of Sines, Law of Cosines, Pythagorean Theorem, Elements, theorems, acute-angled triangle, sphere
Princeton Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.
Please, subscribe or login to access full text content.
If you think you should have access to this title, please contact your librarian.
To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us.