Aggregation
Aggregation
This chapter explores how naturally occurring inanimate structures grow by accretion of smaller-sized components, focusing on one specific accretion process: diffusion-limited aggregation (DLA). In DLA, particles move about in random fashion, but stick together when they come into contact. Clumps of particles then form and grow further by colliding with other individual particles, or clumps of particles. Over time, one or more aggregates of individual particles will grow. After providing an overview of how DLA works, the chapter describes its numerical implementation and shows a representative simulation of a two-dimensional DLA aggregate. It then considers two peculiar geometrical properties of aggregates resulting from the DLA process, namely self-similarity and scale invariance, and shows that rule based growth through DLA can lead to the buildup of complex structures, sometimes exhibiting fractal geometry. The chapter includes exercises and further computational explorations, along with a suggested list of materials for further reading.
Keywords: accretion, diffusion-limited aggregation, fractal geometry, self-similarity, scale invariance, rule-based growth, complex structure
Princeton Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.
Please, subscribe or login to access full text content.
If you think you should have access to this title, please contact your librarian.
To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us.