Forest Fires
Forest Fires
This chapter explores how a “natural” process generates dynamically something that is conceptually similar to a percolation cluster by using the case of forest fires. It first provides an overview of the forest-fire model, which is essentially a probabilistic cellular automata, before discussing its numerical implementation using the Python code. It then describes a representative simulation showing the triggering, growth, and decay of a large fire in a representative forest-fire model simulation on a small 100 x 100 lattice. It also considers the behavior of the forest-fire model as well as its self-organized criticality and concludes with an analysis of the advantages and limitations of wildfire management. The chapter includes exercises and further computational explorations, along with a suggested list of materials for further reading.
Keywords: percolation, forest fires, cellular automata, Python code, growth, lattice, self-organized criticality, wildfire management
Princeton Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.
Please, subscribe or login to access full text content.
If you think you should have access to this title, please contact your librarian.
To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us.