Jump to ContentJump to Main Navigation
Reverse MathematicsProofs from the Inside Out$
Users without a subscription are not able to see the full content.

John Stillwell

Print publication date: 2019

Print ISBN-13: 9780691196411

Published to Princeton Scholarship Online: May 2020

DOI: 10.23943/princeton/9780691196411.001.0001

Show Summary Details
Page of

PRINTED FROM PRINCETON SCHOLARSHIP ONLINE (www.princeton.universitypressscholarship.com). (c) Copyright Princeton University Press, 2021. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in PRSO for personal use.date: 26 September 2021

Arithmetical Comprehension

Arithmetical Comprehension

(p.109) Chapter 6 Arithmetical Comprehension
Reverse Mathematics

John Stillwell

Princeton University Press

This chapter focuses on arithmetical comprehension. Arithmetical comprehension is the most obvious set existence axiom to use when developing analysis in a system based on Peano arithmetic (PA) with set variables. This axiom asserts the existence of a set X of natural numbers for each property φ‎ definable in the language of PA. More precisely, if φ‎(n) is a property defined in the language of PA plus set variables, but with no set quantifiers, then there is a set X whose members are the natural numbers n such that φ‎(n). Since all such formulas φ‎ are asserted for, the arithmetical comprehension axiom is really an axiom schema. The reason set variables are allowed in φ‎ is to enable sets to be defined in terms of “given” sets. The reason set quantifiers are disallowed in φ‎ is to avoid definitions in which a set is defined in terms of all sets of natural numbers (and hence in terms of itself). The system consisting of PA plus arithmetical comprehension is called ACA0. This system lies at a remarkable “sweet spot” among axiom systems for analysis.

Keywords:   arithmetical comprehension, set existence axiom, Peano arithmetic, natural numbers, set variables, axiom schema

Princeton Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us.