Jump to ContentJump to Main Navigation
Berkeley Lectures on p-adic Geometry(AMS-207)$
Users without a subscription are not able to see the full content.

Peter Scholze and Jared Weinstein

Print publication date: 2020

Print ISBN-13: 9780691202082

Published to Princeton Scholarship Online: January 2021

DOI: 10.23943/princeton/9780691202082.001.0001

Show Summary Details
Page of

PRINTED FROM PRINCETON SCHOLARSHIP ONLINE (www.princeton.universitypressscholarship.com). (c) Copyright Princeton University Press, 2022. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in PRSO for personal use.date: 16 May 2022

Perfectoid rings

Perfectoid rings

(p.41) Lecture 6 Perfectoid rings
Berkeley Lectures on p-adic Geometry

Peter Scholze

Jared Weinstein

Princeton University Press

This chapter examines perfectoid spaces. A Huber ring R is Tate if it contains a topologically nilpotent unit; such elements are called pseudo-uniformizers. One can more generally define when an analytic Huber ring is perfectoid. There are also notions of integral perfectoid rings which are not analytic. In this course, the perfectoid rings are all Tate. It would have been possible to proceed with the more general definition of perfectoid ring as a kind of analytic Huber ring. However, being analytic is critical for the purposes of the course. The chapter then looks at tilting and sousperfectoid rings. The class of sousperfectoid rings has good stability properties.

Keywords:   perfectoid spaces, Huber ring, Tate rings, pseudo-uniformizers, perfectoid rings, tilting, sousperfectoid rings

Princeton Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us.