- Title Pages
- Foreword
-
Lecture 1 Introduction -
Lecture 2 Adic spaces -
Lecture 3 Adic spaces II -
Lecture 4 Examples of adic spaces -
Lecture 5 Complements on adic spaces -
Lecture 6 Perfectoid rings -
Lecture 7 Perfectoid spaces -
Lecture 8 Diamonds -
Lecture 9 Diamonds II -
Lecture 10 Diamonds associated with adic spaces -
Lecture 11 Mixed-characteristic shtukas -
Lecture 12 Shtukas with one leg -
Lecture 13 Shtukas with one leg II -
Lecture 14 Shtukas with one leg III -
Lecture 15 Examples of diamonds -
Lecture 16 Drinfeld’s lemma for diamonds -
Lecture 17 The v-topology -
Lecture 18 v-sheaves associated with perfect and formal schemes -
Lecture 19 The -affine Grassmannian -
Lecture 20 Families of affine Grassmannians -
Lecture 21 Affine flag varieties -
Lecture 22 Vector bundles and G-torsors on the relative Fargues-Fontaine curve -
Lecture 23 Moduli spaces of shtukas -
Lecture 24 Local Shimura varieties -
Lecture 25 Integral models of local Shimura varieties - Bibliography
- Index
Perfectoid spaces
Perfectoid spaces
- Chapter:
- (p.49) Lecture 7 Perfectoid spaces
- Source:
- Berkeley Lectures on p-adic Geometry
- Author(s):
Peter Scholze
Jared Weinstein
- Publisher:
- Princeton University Press
This chapter offers a second lecture on perfectoid spaces. A perfectoid Tate ring R is a complete, uniform Tate ring containing a pseudo-uniformizer. A perfectoid space is an adic space covered by affinoid adic spaces with R perfectoid. The term “affinoid perfectoid space” is ambiguous. The chapter then looks at the tilting process and the tilting equivalence. The tilting equivalence extends to the étale site of a perfectoid space. Why is it important to study perfectoid spaces? The chapter puts forward a certain philosophy which indicates that perfectoid spaces may arise even when one is only interested in classical objects.
Keywords: perfectoid spaces, perfectoid Tate ring, adic space, affinoid adic spaces, affinoid perrfectoid space, tilting equivalence, étale site
Princeton Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.
Please, subscribe or login to access full text content.
If you think you should have access to this title, please contact your librarian.
To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us.
- Title Pages
- Foreword
-
Lecture 1 Introduction -
Lecture 2 Adic spaces -
Lecture 3 Adic spaces II -
Lecture 4 Examples of adic spaces -
Lecture 5 Complements on adic spaces -
Lecture 6 Perfectoid rings -
Lecture 7 Perfectoid spaces -
Lecture 8 Diamonds -
Lecture 9 Diamonds II -
Lecture 10 Diamonds associated with adic spaces -
Lecture 11 Mixed-characteristic shtukas -
Lecture 12 Shtukas with one leg -
Lecture 13 Shtukas with one leg II -
Lecture 14 Shtukas with one leg III -
Lecture 15 Examples of diamonds -
Lecture 16 Drinfeld’s lemma for diamonds -
Lecture 17 The v-topology -
Lecture 18 v-sheaves associated with perfect and formal schemes -
Lecture 19 The -affine Grassmannian -
Lecture 20 Families of affine Grassmannians -
Lecture 21 Affine flag varieties -
Lecture 22 Vector bundles and G-torsors on the relative Fargues-Fontaine curve -
Lecture 23 Moduli spaces of shtukas -
Lecture 24 Local Shimura varieties -
Lecture 25 Integral models of local Shimura varieties - Bibliography
- Index