Jump to ContentJump to Main Navigation
Berkeley Lectures on p-adic Geometry(AMS-207)$
Users without a subscription are not able to see the full content.

Peter Scholze and Jared Weinstein

Print publication date: 2020

Print ISBN-13: 9780691202082

Published to Princeton Scholarship Online: January 2021

DOI: 10.23943/princeton/9780691202082.001.0001

Show Summary Details
Page of

PRINTED FROM PRINCETON SCHOLARSHIP ONLINE (www.princeton.universitypressscholarship.com). (c) Copyright Princeton University Press, 2022. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in PRSO for personal use.date: 23 May 2022

Diamonds II

Diamonds II

Chapter:
(p.64) Lecture 9 Diamonds II
Source:
Berkeley Lectures on p-adic Geometry
Author(s):

Peter Scholze

Jared Weinstein

Publisher:
Princeton University Press
DOI:10.23943/princeton/9780691202082.003.0009

This chapter evaluates the complements on the pro-étale topology. It addresses two issues raised in the previous lecture on the pro-étale topology. The first issue concerned descent, or more specifically pro-étale descent for perfectoid spaces. The other issue was that the property of being a pro-étale morphism is not local for the pro-étale topology on the target. The chapter then looks at quasi-pro-étale morphisms, as well as G-torsors. A morphism of perfectoid spaces is quasi-pro-étale if for any strictly totally disconnected perfectoid space with a map, the pullback is pro-étale. Using this definition, one can give an equivalent characterization of diamonds.

Keywords:   pro-étale topology, pro-étale descent, perfectoid spaces, pro-étale morphism, quasi-pro-étale morphisms, G-torsors, diamonds

Princeton Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us.