- Title Pages
- Foreword
-
Lecture 1 Introduction -
Lecture 2 Adic spaces -
Lecture 3 Adic spaces II -
Lecture 4 Examples of adic spaces -
Lecture 5 Complements on adic spaces -
Lecture 6 Perfectoid rings -
Lecture 7 Perfectoid spaces -
Lecture 8 Diamonds -
Lecture 9 Diamonds II -
Lecture 10 Diamonds associated with adic spaces -
Lecture 11 Mixed-characteristic shtukas -
Lecture 12 Shtukas with one leg -
Lecture 13 Shtukas with one leg II -
Lecture 14 Shtukas with one leg III -
Lecture 15 Examples of diamonds -
Lecture 16 Drinfeld’s lemma for diamonds -
Lecture 17 The v-topology -
Lecture 18 v-sheaves associated with perfect and formal schemes -
Lecture 19 The -affine Grassmannian -
Lecture 20 Families of affine Grassmannians -
Lecture 21 Affine flag varieties -
Lecture 22 Vector bundles and G-torsors on the relative Fargues-Fontaine curve -
Lecture 23 Moduli spaces of shtukas -
Lecture 24 Local Shimura varieties -
Lecture 25 Integral models of local Shimura varieties - Bibliography
- Index
Diamonds associated with adic spaces
Diamonds associated with adic spaces
- Chapter:
- (p.74) Lecture 10 Diamonds associated with adic spaces
- Source:
- Berkeley Lectures on p-adic Geometry
- Author(s):
Peter Scholze
Jared Weinstein
- Publisher:
- Princeton University Press
This chapter focuses on diamonds associated with adic spaces. The goal is to construct a functor which forgets the structure morphism to Spa Zp, but retains topological information. The chapter studies how much information is lost when applying this construction. The intuition is that only topological information is kept. A morphism of adic spaces is a universal homeomorphism if all pullbacks are homeomorphisms. As in the case of schemes, in characteristic 0 the map f is a universal homeomorphism if and only if it is a homeomorphism and induces isomorphisms on completed residue fields. In keeping with the intuition, universal homeomorphisms induce isomorphisms of diamonds. The chapter then considers the underlying topological space of diamonds, as well as the étale site of diamonds.
Keywords: diamonds, adic spaces, topological information, universal homeomorphism, isomorphisms, topological space, étale site
Princeton Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.
Please, subscribe or login to access full text content.
If you think you should have access to this title, please contact your librarian.
To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us.
- Title Pages
- Foreword
-
Lecture 1 Introduction -
Lecture 2 Adic spaces -
Lecture 3 Adic spaces II -
Lecture 4 Examples of adic spaces -
Lecture 5 Complements on adic spaces -
Lecture 6 Perfectoid rings -
Lecture 7 Perfectoid spaces -
Lecture 8 Diamonds -
Lecture 9 Diamonds II -
Lecture 10 Diamonds associated with adic spaces -
Lecture 11 Mixed-characteristic shtukas -
Lecture 12 Shtukas with one leg -
Lecture 13 Shtukas with one leg II -
Lecture 14 Shtukas with one leg III -
Lecture 15 Examples of diamonds -
Lecture 16 Drinfeld’s lemma for diamonds -
Lecture 17 The v-topology -
Lecture 18 v-sheaves associated with perfect and formal schemes -
Lecture 19 The -affine Grassmannian -
Lecture 20 Families of affine Grassmannians -
Lecture 21 Affine flag varieties -
Lecture 22 Vector bundles and G-torsors on the relative Fargues-Fontaine curve -
Lecture 23 Moduli spaces of shtukas -
Lecture 24 Local Shimura varieties -
Lecture 25 Integral models of local Shimura varieties - Bibliography
- Index