Jump to ContentJump to Main Navigation
Berkeley Lectures on p-adic Geometry(AMS-207)$
Users without a subscription are not able to see the full content.

Peter Scholze and Jared Weinstein

Print publication date: 2020

Print ISBN-13: 9780691202082

Published to Princeton Scholarship Online: January 2021

DOI: 10.23943/princeton/9780691202082.001.0001

Show Summary Details
Page of

PRINTED FROM PRINCETON SCHOLARSHIP ONLINE (www.princeton.universitypressscholarship.com). (c) Copyright Princeton University Press, 2022. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in PRSO for personal use.date: 03 July 2022

Moduli spaces of shtukas

Moduli spaces of shtukas

Chapter:
(p.215) Lecture 23 Moduli spaces of shtukas
Source:
Berkeley Lectures on p-adic Geometry
Author(s):

Peter Scholze

Jared Weinstein

Publisher:
Princeton University Press
DOI:10.23943/princeton/9780691202082.003.0023

This chapter examines the moduli spaces of mixed-characteristic local G-shtukas and shows that they are representable by locally spatial diamonds. These will be the mixed-characteristic local analogues of the moduli spaces of global equal-characteristic shtukas introduced by Varshavsky. It may be helpful to briefly review the construction in the latter setting. The ingredients are a smooth projective geometrically connected curve X defined over a finite field Fq and a reductive group G/Fq. Each connected component is a quotient of a quasi-projective scheme by a finite group. From there, it is possible to add level structures to the spaces of shtukas, to obtain a tower of moduli spaces admitting an action of the adelic group. The cohomology of these towers of moduli spaces is the primary means by which V. Lafforgue constructs the “automorphic to Galois” direction of the Langlands correspondence for G over F.

Keywords:   moduli spaces, shtukas, spatial diamonds, mixed-characteristic local analogues, Varshavsky, quasi-projective scheme, adelic group, V. Lafforgue, Langlands correspondence

Princeton Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us.