Normal Forms and Cohomology Classes at Single Resonances
Normal Forms and Cohomology Classes at Single Resonances
This chapter discusses the single-resonance non-degeneracy conditions and normal forms. It then formulates Theorem 3.3, which covers the forcing equivalence in the single-resonance regime. The classical partial averaging theory indicates that after a coordinate change, the system has the normal form away from punctures. In order to state the normal form, one needs an anisotropic norm adapted to the perturbative nature of the system. The chapter also uses the idea of Lochak to cover the action space with double resonances. A double resonance corresponds to a periodic orbit of the unperturbed system. Finally, the chapter looks at a lemma which is an easy consequence of the Dirichlet theorem.
Keywords: single-resonance non-degeneracy conditions, normal forms, forcing equivalence, single-resonance regime, partial averaging theory, double resonances, Dirichlet theorem
Princeton Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.
Please, subscribe or login to access full text content.
If you think you should have access to this title, please contact your librarian.
To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us.