Jump to ContentJump to Main Navigation
Arnold Diffusion for Smooth Systems of Two and a Half Degrees of Freedom(AMS-208)$
Users without a subscription are not able to see the full content.

Vadim Kaloshin and Ke Zhang

Print publication date: 2020

Print ISBN-13: 9780691202525

Published to Princeton Scholarship Online: May 2021

DOI: 10.23943/princeton/9780691202525.001.0001

Show Summary Details
Page of

PRINTED FROM PRINCETON SCHOLARSHIP ONLINE (www.princeton.universitypressscholarship.com). (c) Copyright Princeton University Press, 2022. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in PRSO for personal use.date: 27 June 2022

Double Resonance: Forcing Equivalence

Double Resonance: Forcing Equivalence

(p.39) Chapter Five Double Resonance: Forcing Equivalence
Arnold Diffusion for Smooth Systems of Two and a Half Degrees of Freedom

Kaloshin Vadim

Zhang Ke

Princeton University Press

This chapter assesses the choice of cohomology and Aubry-Mather type at the double resonance. It begins by choosing cohomology classes for the (unperturbed) slow mechanical system. As in the case of single-resonance, the strategy is to choose a continuous curve in the cohomology space and prove forcing equivalence up to a residual perturbation. To do this, one needs to use the duality between homology and cohomology. The chapter then proves Aubry-Mather type for the perturbed slow mechanical system and reverts to the original coordinates. As the system has been perturbed, one needs to modify the choice of cohomology classes to connect the single and double resonances. Finally, the chapter proves Theorem 2.2, proving the main theorem.

Keywords:   cohomology, Aubry-Mather type, double resonance, slow mechanical system, forcing equivalence, cohomology classes, homology

Princeton Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us.