Jump to ContentJump to Main Navigation
Arnold Diffusion for Smooth Systems of Two and a Half Degrees of Freedom(AMS-208)$
Users without a subscription are not able to see the full content.

Vadim Kaloshin and Ke Zhang

Print publication date: 2020

Print ISBN-13: 9780691202525

Published to Princeton Scholarship Online: May 2021

DOI: 10.23943/princeton/9780691202525.001.0001

Show Summary Details
Page of

PRINTED FROM PRINCETON SCHOLARSHIP ONLINE (www.princeton.universitypressscholarship.com). (c) Copyright Princeton University Press, 2022. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in PRSO for personal use.date: 30 June 2022

Perturbative weak KAM theory

Perturbative weak KAM theory

Chapter:
(p.66) Chapter Seven Perturbative weak KAM theory
Source:
Arnold Diffusion for Smooth Systems of Two and a Half Degrees of Freedom
Author(s):

Kaloshin Vadim

Zhang Ke

Publisher:
Princeton University Press
DOI:10.23943/princeton/9780691202525.003.0007

This chapter explores perturbation aspects of the weak Kolmogorov-Arnold-Moser (KAM) theory. By perturbative weak KAM theory, we mean two things. How do the weak KAM solutions and the Mather, Aubry, and Mañé sets respond to limits of the Hamiltonian? How do the weak KAM solutions change when we perturb a system, in particular, what happens when we perturb (1) completely integrable systems, and (2) autonomous systems by a time-periodic perturbation? The chapter states and proves results in both aspects, as a technical tool for proving forcing equivalence. It derives a special Lipshitz estimate of weak KAM solutions for perturbations of autonomous systems. The proof relies on semi-concavity of weak KAM solution.

Keywords:   time-periodic perturbation, weak KAM theory, Kolmogorov-Arnold-Moser theory, perturbative weak KAM theory, weak KAM solutions, Hamiltonian, forcing equivalence, Lipshitz estimate, autonomous systems, integrable systems

Princeton Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us.