Normally hyperbolic cylinders at double resonance
Normally hyperbolic cylinders at double resonance
This chapter proves the geometric picture of double resonance described in Chapter 4. There are two cases. In the simple critical homology case, the chapter shows the homoclinic orbit can be extended to periodic orbits both in positive and negative energy. The union of these periodic orbits forms a normally hyperbolic invariant manifold (which is homotopic to a cylinder with a puncture). In the non-simple homology case, the chapter demonstrates that for positive energy, there exist periodic orbits. The strategy is to prove the existence of these periodic orbits as hyperbolic fixed points of composition of local and global maps. A main technical tool to prove the existence and uniqueness of these fixed points is the Conley-McGehee isolation block.
Keywords: simple critical homology, homoclinic orbit, periodic orbits, normally hyperbolic invariant manifold, non-simple homology, global maps, Conley-McGehee isolation block
Princeton Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.
Please, subscribe or login to access full text content.
If you think you should have access to this title, please contact your librarian.
To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us.